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Abstract

Metrics such as the transparency order and the confusion coefficient have been proposed to assess
the intrinsic resistance to SCA attacks of a given S-box at the design stage. We extensively
compare the metrics that have appeared in literature and apply them to the S-boxes used in the
CAESAR competition for new authenticated encryption schemes. Although the most promising
metrics are consistent in their predictions and behave as expected under different circumstances,
the results are not reflected by CPA simulation results.

We then look at cipher design strategies that reduce the costs of masking. We compute
the multiplicative complexity of the S-boxes by encoding the problem in logic and feeding it to
SAT solvers, and we provide implementations with a provably minimum number of nonlinear
operations, for which the cost of masking is quadratic in the number of gates. We also compare
fundamental high-level operations used by the CAESAR candidates and show which ciphers are
expected to have the lowest masking costs and why.
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Chapter 1

Introduction

We are living in a world where everything has become digital and everything has become connected.
The amount of data travelling around the globe every millisecond is simply staggering. It is in
these days that we are starting to understand the tremendous nature of the consequences. Many
billions of dollars and even lives depend on pieces of programming code held together by duct tape
and created by humans, who inherently make mistakes. All of this would collapse immediately
without notions of security and reliability.

Security is about regulating access to assets. Over the last few decades, researches have created
a large portfolio of methods to do this regulation. Some of them turned out to be not secure at
all, some have been proven secure under certain assumptions and with all remaining methods,
we merely hope for the best. A few methods in particular have enjoyed extensive amounts of
research and still stand, such that they are considered the best methods to provide security in
certain contexts. However, with time and progress, the notion of what exactly is secure, changes.
Not just because computers become faster and smarter, but also because even better attacks can
sometimes be found.

One such major breakthrough occurred around 1998. Methods that were secure in theory1,
turned out to be breakable in practice, when implementation details and physical characteristics
of the devices executing the methods are added to the equation. Think, for instance, of the power
consumption of the device, or of the electromagnetic field that it radiates. Being able to use such
additional information changed the notion of security. In fact, this discovery lead to completely
new fields of research. How this information can be used will be explained in more detail in
Section 2.5. A plethora of countermeasures have been suggested to again make things secure, but
they tend to come with quite significant additional costs.

1.1 Problem Statement

Especially for small devices, significant additional costs in terms of e.g. area are often not tolerable.
Similarly, implementing a masking countermeasure in software can slow down a computation by
a factor of 2 or more [50], which is undesired. There are situations where these disadvantages
lead to ignoring countermeasures and to deliberately choosing less secure alternatives. On the
one hand it is therefore important to know how it is possible to assess the security of a method
against such implementation- and device-dependent attacks. With this knowledge, it can be
used as a design criterion for new methods that are intrinsically more secure, regardless their

1And they still are. Or at least, reasonably secure, up to our current state of knowledge.
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implementation and on which device they are run. On the other hand it is relevant to find out
how the additional costs that come with countermeasures can be reduced, so it becomes more
likely that they are widely adopted.

1.2 Research Questions

This thesis assumes the context of the CAESAR candidates for authenticated encryption. CAE-
SAR is an international multi-year competition aimed at finding new secure and efficient authen-
ticated encryption primitives. This will be explained in more detail in Section 2.2.3. Within this
context, the above directly translates to the following main research questions:

1. How can known metrics be used at the design stage to assess the intrinsic resistance of
CAESAR candidates to implementation- and device-dependent attacks?

2. How can the costs of applying masking countermeasures to CAESAR candidates be reduced?

However, the research methods and conclusions are more generally applicable. There is
no fundamental difference between the CAESAR candidates for authenticated encryption and
other cryptographic algorithms with regard to their security against implementation- and device-
dependent attacks or with regard to the costs of countermeasures. The CAESAR candidates are
taken as a case study, but they are sufficiently diverse to represent a larger set of cryptographic
methods.

1.3 Structure

Some preliminaries on cryptography, the CAESAR candidates and side-channel analysis are
provided in Chapter 2. We then attempt to answer the first research question by looking at
the metrics that exist in literature. They are covered in Chapter 3. New results show how the
metrics perform in practical scenario’s and a comparison between metrics is made. Chapter 4
and Chapter 5 are more related to the second research question. In Chapter 4, the number of
costly nonlinear operations is reduced for several CAESAR candidates. Chapter 5 provides an
overview of the expected masking costs by looking at the types of operations, together resulting
in a general strategy to design ciphers with low masking costs. Chapter 6 summarises the main
conclusions and Chapter 7 gives some ideas for future work.

2



Chapter 2

Preliminaries

2.1 Security Goals

In information security, there are some goals that are often pursued. Confidentiality means that
access to data is limited by rules. For example, it is a matter of confidentiality when only certain
individuals are allowed to read a certain message. Data integrity refers to that data cannot
be altered by someone who is unauthorised or without him or her being detected. Data origin
authenticity, or hereafter simply authenticity, means that someone can guarantee where data
originates from and that it has not been altered after it came from this origin. It can be seen that
data origin authenticity implies data integrity. Entity authenticity means that someone can be
sure who he or she is communicating with. Finally, availability and non-repudiation deal with the
availability of data when it is required and with not being able to deny one’s actions, respectively.

2.2 Symmetric Cryptography

2.2.1 Encryption

Cryptography is the study of designing mathematical techniques to provide security goals, even
in a context with adversaries. One use case is when one wants to send information to someone
else, without others being able to read or to alter the information. Symmetric cryptography,
also known as secret-key cryptography, is a particular kind of cryptography where the sender
and receiver possess a shared key. Using this key, the sender can encrypt his information, or
the plaintext, to something that should be incomprehensible to anyone else, the ciphertext. This
process is called symmetric encryption and it deals with the security goal of confidentiality. Only
with the correct key is the receiver able to decrypt the information to the original plaintext.

The primitives that are used to build symmetric encryption functions can be further categorised
as block ciphers, permutations and stream ciphers. Block ciphers operate on fixed-length blocks.

When used for encryption, they provide an encryption function E(x, k) : Fn2 × F|k|2 → Fn2 , where
x is a plaintext of length n and k is a key of length |k|. The inverse of this mapping is commonly
(but nut necessarily) used to build the decryption function. When the plaintext that one wants
to encrypt is larger than n, the plaintext is split into multiple blocks. Stream ciphers generate a
keystream of arbitrary length that usually only depends on the key1, which is then combined with

1This does not hold for e.g. self-synchronizing stream encryption, where the keystream also depends on the
last n ciphertext bits, for some n.
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the plaintext to compute the ciphertext, often using the bitwise XOR (‘exclusive or’) operation or
using bitwise addition. All these primitives are run in a certain mode of operation, that dictates
how to use the primitive on arbitrary messages. Some examples of modes are Electronic Codebook
(ECB), Cipher Block Chaining (CBC), Counter (CTR), and the sponge construction. A block
cipher can also be used to provide stream encryption when, for instance, counter mode is used.

2.2.2 Authentication

In cryptographic protocols, secure communication also requires authenticity, to guarantee that
the message that was received was indeed sent by the right sender and not by someone else,
and to guarantee that the message has not been tampered with. The traditional way to provide
authenticity is to add a message authentication code (MAC or tag) to the message. The MAC
depends on a key and on the plaintext. Primitives such as block ciphers run in particular modes
can be used to construct MAC functions.

2.2.3 Authenticated Encryption

There are a lot of details to get right when combining encryption and MACs. Several flaws in
popular protocols such as SSL/TLS were due to this issue. Several approaches are possible, but
the three best-known are encrypt-then-MAC, encrypt-and-MAC (e.g. as in SSH), and MAC-then-
encrypt (e.g. as in SSL and TLS).

Because of these difficulties with combining confidentiality, integrity, and authenticity, re-
searchers have looked at block cipher modes of operation that provide all of them at once in
an efficient way. These are called authenticated encryption (AE) schemes, or authenticated
encryption with associated data (AEAD). Some notable examples are GCM and CCM.

While AES-GCM is commonly used in TLS 1.2, there are not many alternatives available that
have been extensively studied and that could be used as a drop-in replacement in case anyone will
break AES-GCM in the future. For this reason, among others, the CAESAR competition was
announced in 2013. Similarly to the previously held public competitions for block ciphers (AES),
stream ciphers (eSTREAM) and hash functions (SHA-3), a multi-year multi-round competition
would be the solution to find more secure authenticated encryption schemes, preferably more
efficient than AES-GCM.

2.3 Boolean functions and S-boxes

Constructing block ciphers can be done in a lot of different ways. Section 2.1.2 of [59] summarises
some features to distinguish block ciphers. One important aspect is that ciphers have to contain
a nonlinear part in order to withstand cryptanalysis. Often, this is provided by a so-called S-box,
which is a nonlinear function S : Fn2 → Fm2 . Many properties are defined for S-boxes that relate
to their theoretical security [11]. Only a handful is explained in the next section.

2.3.1 Properties

An S-box is called a square S-box when n = m. A fixed point of S is a value x such that S(x) = x.
When m = 1, the function is called a Boolean function. In general, the S-box can be thought

of as being composed of Boolean coordinate functions Si : Fn2 → F2 for all i ∈ {0, . . . ,m− 1}.
A Boolean function f is called balanced when Pr[f(·) = 1] = 1

2 . An S-box is called balanced
when all coordinate functions are balanced. When an S-box takes every value of Fm2 the same
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number 2n−m of times, it is implied that an S-box is balanced. Balanced S-boxes with n = m are
permutations on Fn2 .

The Walsh transform WS of an S-box S is the function

WS(a, v) =
∑
x∈Fn

2

(−1)(v·S(x))⊕(a·x),

where ⊕ denotes addition modulo 2 and b · c =
⊕n−1

i=0 bici is the dot product of two vectors b and
c.

A Boolean function f is called bent when its Walsh transform has a constant absolute value [63].
Bent functions exist only for even n.

Let the Hamming weight HW of x ∈ Fn2 be defined as:

HW(x) =

n−1∑
i=0

xi,

where xi is the ith bit of x. Informally, the Hamming weight corresponds to the number of
non-zero positions in the bit string representation of x. The Hamming distance HD between two
vectors a, b ∈ Fn2 is HD(a, b) = HW(a⊕ b), where ⊕ denotes the bitwise XOR operation. When a
Boolean function f is bent, HW(f) = 2n−1 ± 2

n
2−1 [16].

Let Fm∗2 be defined as Fm∗2 = Fm2 \ (0, . . . , 0︸ ︷︷ ︸
m

). Then the linearity of an S-box S is [11]:

Lin(S) = max
a∈Fn

2 ,v∈Fm∗
2

|WS(a, v)| .

The nonlinearity of S is its distance to the nearest affine function on Fn2 [18], i.e.:

Nonlin(S) = 2n−1 − 1

2
Lin(S).

When a Boolean function f is bent, Nonlin(f) = 2n−1− 2
n
2−1, which is the maximum possible

nonlinearity [57].
The algebraic degree of a Boolean function f , deg(f), is the maximum number of variables of

the terms in the algebraic normal form (ANF) of f [11]. f is affine when deg(f) ≤ 1. f is linear
when f is affine, non-constant and when f(0) = 0. When f is bent and n > 2, deg(f) ≤ n

2 [63].
The algebraic degree of an S-box S is:

deg(S) = max
i∈{0,...,n−1}

deg(Si).

The differential delta uniformity δ of an S-box is the largest value in the difference distribution
table excluding the 2n in the upper left position [8]. It holds for all S-boxes that δ(S) ≥ 2.

2.3.2 Desired Values

A lot of research has aimed at finding systematic methods for designing S-boxes with good
cryptographic properties, but especially for larger S-boxes, this still remains a largely unsolved
problem. For cryptographic applications, S-boxes with linear coordinate functions are undesired.
Usually, it is desired to be invertible and to have a nonlinearity an algebraic degree as high as
possible, while δ should be as low as possible, although this depends on the design strategy
and does not hold in general. Recent results argue that this last criterion should in fact always
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be relaxed [40]. A high nonlinearity implies that an S-box is very suitable to be part of a
cipher that is very resistant to linear cryptanalysis [48]. A high algebraic degree means that
algebraic cryptanalysis [4] is harder and a low differential delta uniformity means that differential
cryptanalysis [8] will be harder.

For balanced S-boxes, the algebraic degree can be at most n− 1. The S-boxes with the highest
nonlinearity are bent, however, and that implies an algebraic degree of ≤ n

2 [63]. So-called almost
bent functions are related to bent functions but still have good nonlinearity properties [19].

For 4x4 S-boxes (i.e. n = 4,m = 4), it is known which S-boxes are ‘optimal’, where being
optimal is defined as being bijective, having Lin(S) = 82, and δ(S) = 4. Whether this ‘optimal’
result is also really desired depends on the design strategy. There exist no 4x4 S-boxes with
δ(S) = 2 [46]. All 16! possible bijective S-boxes have exhaustively been classified. It turns
out that up to affine equivalence, there exist only 16 different optimal S-boxes [46]. Bijectivity,
Lin and δ are invariant under invertible affine transformations, so when S is an optimal S-box,
S′(x) = B(S(A(x) + a)) + b is an optimal S-box as well, for A,B ∈ F4

2 × F4
2, A and B invertible,

a, b ∈ F4
2, and where A(x) denotes multiplication of column vector x with square matrix A. 8 of

these 16 have ∀i∈{0,...,n−1} deg(Si) = 3.
All of this is not known for larger S-boxes, as exhaustive searching is then no longer feasible.

Attempts have been made to use evolutionary computation to find ‘better’ 8x8 S-boxes [61].

2.4 S-boxes of CAESAR Candidates and RECTANGLE

The CAESAR competition for new authenticated encryption schemes started out with 57 submis-
sions for the first round. Nine of them have been broken or withdrawn before the end of the first
round. In July 2015 it was announced which 30 candidates have made it to the second round of
the competition.

An overview and categorisation of 50 candidates, which includes cryptographic features,
security claims and parameter sizes, can be found in [1]. Most candidates are either based on a
block cipher as central building block, a stream cipher, or a permutation. Apart from stream
cipher based approaches and some dedicated methods, most candidates contain an S-box as the
only nonlinear element of the algorithm. This section takes a closer look at the S-boxes that are
involved in the competition. For all S-boxes it holds that they are bijective. The properties are
computed using the SET toolbox [60].

2Or, equivalently, having Nonlin(S) = 4.
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2.4.1 AES

S =



99, 124, 119, 123, 242, 107, 111, 197, 48, 1, 103, 43, 254, 215, 171, 118

202, 130, 201, 125, 250, 89, 71, 240, 173, 212, 162, 175, 156, 164, 114, 192

183, 253, 147, 38, 54, 63, 247, 204, 52, 165, 229, 241, 113, 216, 49, 21

4, 199, 35, 195, 24, 150, 5, 154, 7, 18, 128, 226, 235, 39, 178, 117

9, 131, 44, 26, 27, 110, 90, 160, 82, 59, 214, 179, 41, 227, 47, 132

83, 209, 0, 237, 32, 252, 177, 91, 106, 203, 190, 57, 74, 76, 88, 207

208, 239, 170, 251, 67, 77, 51, 133, 69, 249, 2, 127, 80, 60, 159, 168

81, 163, 64, 143, 146, 157, 56, 245, 188, 182, 218, 33, 16, 255, 243, 210

205, 12, 19, 236, 95, 151, 68, 23, 196, 167, 126, 61, 100, 93, 25, 115

96, 129, 79, 220, 34, 42, 144, 136, 70, 238, 184, 20, 222, 94, 11, 219

224, 50, 58, 10, 73, 6, 36, 92, 194, 211, 172, 98, 145, 149, 228, 121

231, 200, 55, 109, 141, 213, 78, 169, 108, 86, 244, 234, 101, 122, 174, 8

186, 120, 37, 46, 28, 166, 180, 198, 232, 221, 116, 31, 75, 189, 139, 138

112, 62, 181, 102, 72, 3, 246, 14, 97, 53, 87, 185, 134, 193, 29, 158

225, 248, 152, 17, 105, 217, 142, 148, 155, 30, 135, 233, 206, 85, 40, 223

140, 161, 137, 13, 191, 230, 66, 104, 65, 153, 45, 15, 176, 84, 187, 22



S−1 =



82, 9, 106, 213, 48, 54, 165, 56, 191, 64, 163, 158, 129, 243, 215, 251

124, 227, 57, 130, 155, 47, 255, 135, 52, 142, 67, 68, 196, 222, 233, 203

84, 123, 148, 50, 166, 194, 35, 61, 238, 76, 149, 11, 66, 250, 195, 78

8, 46, 161, 102, 40, 217, 36, 178, 118, 91, 162, 73, 109, 139, 209, 37

114, 248, 246, 100, 134, 104, 152, 22, 212, 164, 92, 204, 93, 101, 182, 146

108, 112, 72, 80, 253, 237, 185, 218, 94, 21, 70, 87, 167, 141, 157, 132

144, 216, 171, 0, 140, 188, 211, 10, 247, 228, 88, 5, 184, 179, 69, 6

208, 44, 30, 143, 202, 63, 15, 2, 193, 175, 189, 3, 1, 19, 138, 107

58, 145, 17, 65, 79, 103, 220, 234, 151, 242, 207, 206, 240, 180, 230, 115

150, 172, 116, 34, 231, 173, 53, 133, 226, 249, 55, 232, 28, 117, 223, 110

71, 241, 26, 113, 29, 41, 197, 137, 111, 183, 98, 14, 170, 24, 190, 27

252, 86, 62, 75, 198, 210, 121, 32, 154, 219, 192, 254, 120, 205, 90, 244

31, 221, 168, 51, 136, 7, 199, 49, 177, 18, 16, 89, 39, 128, 236, 95

96, 81, 127, 169, 25, 181, 74, 13, 45, 229, 122, 159, 147, 201, 156, 239

160, 224, 59, 77, 174, 42, 245, 176, 200, 235, 187, 60, 131, 83, 153, 97

23, 43, 4, 126, 186, 119, 214, 38, 225, 105, 20, 99, 85, 33, 12, 125


Rijndael [25] was the name of the winner of the NIST Advanced Encryption Standard

competition for block ciphers, and since it has been standardised in 2001 it has became the block
cipher most commonly used in practice. It has been given much attention from researchers. For
this reason, many of the CAESAR candidates use AES as the underlying block cipher. Another
reason is that newer processors that support the AES-NI instruction set extension have AES
built into hardware, which nearly guarantees high encryption and decryption speeds when AES is
run in parallelisable modes.

AES contains an 8x8 S-box that was designed to minimise the maximum differential propagation
probability. deg(S) = deg(S−1) = 7 and Nonlin(S) = Nonlin(S−1) = 112. No 8x8 S-boxes are
known with the same algebraic degree and a higher nonlinearity, although it has been proven
that one should exist [64]. For both S and S′, δ = 4.
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2.4.2 iSCREAM and SCREAM

S =



0, 133, 101, 210, 91, 255, 122, 206, 77, 226, 44, 54, 146, 21, 189, 173

87, 243, 55, 45, 136, 13, 172, 188, 24, 159, 126, 202, 65, 238, 97, 214

89, 236, 120, 212, 71, 249, 38, 163, 144, 139, 191, 48, 10, 19, 111, 192

43, 174, 145, 138, 216, 116, 11, 18, 204, 99, 253, 67, 178, 61, 232, 93

182, 28, 131, 59, 200, 69, 157, 36, 82, 221, 228, 244, 171, 8, 119, 109

245, 229, 72, 197, 108, 118, 186, 16, 153, 32, 167, 4, 135, 63, 208, 95

165, 30, 155, 57, 176, 2, 234, 103, 198, 223, 113, 246, 84, 79, 141, 46

231, 106, 199, 222, 53, 151, 85, 78, 34, 129, 6, 180, 124, 251, 26, 161

213, 121, 252, 66, 132, 1, 233, 92, 20, 147, 51, 41, 193, 110, 168, 184

40, 50, 12, 137, 185, 169, 217, 117, 237, 88, 205, 98, 248, 70, 158, 25

203, 127, 162, 39, 215, 96, 254, 90, 142, 149, 227, 76, 22, 15, 49, 190

100, 211, 60, 179, 123, 207, 64, 239, 143, 148, 86, 242, 23, 14, 175, 42

47, 140, 241, 225, 220, 83, 104, 114, 68, 201, 27, 160, 56, 154, 7, 181

94, 209, 3, 177, 35, 128, 31, 164, 52, 150, 224, 240, 196, 73, 115, 105

218, 195, 9, 170, 74, 81, 247, 112, 62, 134, 102, 235, 33, 152, 29, 183

219, 194, 187, 17, 75, 80, 107, 230, 156, 37, 250, 125, 130, 58, 166, 5



S′ =



30, 117, 95, 225, 153, 252, 137, 47, 134, 238, 241, 123, 35, 82, 16, 148

12, 183, 77, 103, 216, 66, 200, 214, 196, 107, 170, 186, 61, 165, 0, 51

83, 45, 11, 184, 218, 168, 197, 108, 202, 182, 164, 34, 96, 7, 93, 215

79, 244, 21, 50, 129, 27, 156, 142, 145, 63, 230, 249, 112, 233, 67, 126

141, 243, 204, 101, 8, 122, 24, 171, 22, 106, 119, 253, 167, 192, 130, 4

159, 49, 222, 227, 73, 208, 89, 70, 84, 239, 46, 60, 187, 33, 146, 181

85, 62, 15, 169, 220, 185, 193, 127, 206, 166, 180, 48, 114, 3, 91, 209

75, 228, 19, 32, 133, 29, 154, 138, 151, 44, 246, 232, 98, 248, 71, 109

41, 65, 104, 213, 172, 203, 190, 26, 176, 219, 199, 78, 23, 100, 38, 160

57, 131, 120, 81, 237, 118, 255, 226, 242, 92, 157, 143, 10, 147, 52, 5

37, 88, 124, 205, 175, 223, 179, 25, 189, 194, 210, 86, 20, 113, 42, 163

58, 128, 97, 68, 245, 110, 235, 251, 231, 72, 144, 140, 6, 158, 55, 9

152, 229, 217, 115, 31, 111, 13, 188, 2, 125, 99, 234, 177, 212, 150, 18

136, 39, 201, 247, 94, 198, 76, 80, 64, 250, 59, 43, 174, 53, 132, 161

1, 105, 90, 254, 139, 236, 149, 40, 155, 240, 224, 102, 36, 87, 14, 135

28, 178, 69, 116, 211, 74, 207, 221, 195, 121, 162, 191, 54, 173, 17, 56



S′−1 =



30, 224, 200, 109, 79, 159, 188, 45, 68, 191, 156, 34, 16, 198, 238, 98

14, 254, 207, 114, 172, 50, 72, 140, 70, 167, 135, 53, 240, 117, 0, 196

115, 93, 43, 12, 236, 160, 142, 209, 231, 128, 174, 219, 121, 33, 90, 7

107, 81, 51, 31, 158, 221, 252, 190, 255, 144, 176, 218, 91, 28, 97, 57

216, 129, 21, 62, 179, 242, 87, 126, 185, 84, 245, 112, 214, 18, 139, 48

215, 147, 13, 32, 88, 96, 171, 237, 161, 86, 226, 110, 153, 46, 212, 2

44, 178, 124, 202, 141, 67, 235, 19, 130, 225, 73, 25, 39, 127, 181, 197

60, 173, 108, 195, 243, 1, 149, 74, 146, 249, 69, 11, 162, 201, 63, 103

177, 52, 78, 145, 222, 116, 8, 239, 208, 6, 119, 228, 187, 64, 55, 155

186, 56, 94, 157, 15, 230, 206, 120, 192, 4, 118, 232, 54, 154, 189, 80

143, 223, 250, 175, 42, 29, 105, 76, 37, 99, 26, 71, 132, 253, 220, 164

136, 204, 241, 166, 106, 95, 41, 17, 35, 101, 27, 92, 199, 168, 134, 251

77, 102, 169, 248, 24, 38, 213, 138, 22, 210, 40, 133, 66, 163, 104, 246

85, 111, 170, 244, 205, 131, 23, 47, 20, 194, 36, 137, 100, 247, 82, 165

234, 3, 151, 83, 113, 193, 58, 184, 123, 61, 203, 182, 229, 148, 9, 89

233, 10, 152, 65, 49, 180, 122, 211, 125, 59, 217, 183, 5, 75, 227, 150


iSCREAM and SCREAM are based on the new tweakable block ciphers iScream and Scream,
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which only have some small differences [37]. Both use 8x8 S-boxes that are chosen because of their
known highly efficient bitsliced implementations. The S-boxes are based on the ones of Robin and
Fantomas, respectively, as introduced in [36]. The S-boxes are created by combining two efficient
4-bit S-boxes. An important difference is that the S-box of iScream and Robin is involutory, i.e.
S = S−1 or S(S(x)) = x, which means that it saves space by not requiring an inverse for the
inverse cipher. This does not hold for the S-boxes of Scream and Fantomas. All three S-boxes
have Nonlin = 96 and δ = 16. deg(S) = deg(S′−1) = 6, while deg(S′) = 5. However, SCREAM
has made it to the second round of the CAESAR competition, while iSCREAM has not.

2.4.3 Ascon

S = [4, 11, 31, 20, 26, 21, 9, 2, 27, 5, 8, 18, 29, 3, 6, 28, . . .

. . . , 30, 19, 7, 14, 0, 13, 17, 24, 16, 12, 1, 25, 22, 10, 15, 23]

The 5-bit S-box used in Ascon [28] is a lightweight affine transformation of Keccak-χ [5]. When
the transformation is seen as part of the mixing layer, the S-box is really the same as in Keccak.
It is designed to have an efficient bitsliced software implementation. With deg(S) = 2 it has the
lowest possible algebraic degree for a non-linear function, Nonlin(S) = 8, and δ(S) = 8. While
the S-box is not an involution, the decryption in Ascon does not require the inverse S-box due to
its sponge construction.

2.4.4 ICEPOLE

S = [31, 5, 10, 11, 20, 17, 22, 23, 9, 12, 3, 2, 13, 8, 15, 14, . . .

. . . , 18, 21, 24, 27, 6, 1, 4, 7, 26, 29, 16, 19, 30, 25, 28, 0]

ICEPOLE’s 5-bit S-box [52, 53] is also based on Keccak-χ, but it has swapped the values 0 and
31 in order to achieve a higher algebraic degree. This comes at the cost of more gates or more
bitwise operations. deg(S) = 4, Nonlin(S) = 8, and δ(S) = 8.

2.4.5 Ketje and Keyak

S = [0, 5, 10, 11, 20, 17, 22, 23, 9, 12, 3, 2, 13, 8, 15, 14, . . .

. . . , 18, 21, 24, 27, 6, 1, 4, 7, 26, 29, 16, 19, 30, 25, 28, 31]

The nonlinear element in both Ketje and Keyak [6, 7] is the same as in the hash function
Keccak [5], which was chosen as SHA-3 in 2012. This element is the Keccak-χ step and operates
on 5-bit inputs. It has a very efficient hardware implementation. In pseudocode, it can be
specified as A[x, y] = a[x, y]⊕ ((NOT a[x+ 1, y]) AND a[x+ 2, y]) for all 0 ≤ x, y < 5. deg(S) = 2,
Nonlin(S) = 8, and δ(S) = 8.

2.4.6 PRIMATE

S = [1, 0, 25, 26, 17, 29, 21, 27, 20, 5, 4, 23, 14, 18, 2, 28, . . .

. . . , 15, 8, 6, 3, 13, 7, 24, 16, 30, 9, 31, 10, 22, 12, 11, 19]

S−1 = [1, 0, 14, 19, 10, 9, 18, 21, 17, 25, 27, 30, 29, 20, 12, 16, . . .

. . . , 23, 4, 13, 31, 8, 6, 28, 11, 22, 2, 3, 7, 15, 5, 24, 26]
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With PRIMATE, a new 5-bit S-box was introduced [2]. The S-box is an almost bent function
and reaches a relatively high nonlinearity of Nonlin(S) = 12. deg(S) = 2, but deg(S−1) = 3.
δ(S) = δ(S−1) = 2, which is optimal.

2.4.7 Joltik

S = [14, 4, 11, 2, 3, 8, 0, 9, 1, 10, 7, 15, 6, 12, 5, 13]

S−1 = [6, 8, 3, 4, 1, 14, 12, 10, 5, 7, 9, 2, 13, 15, 0, 11]

Joltik [42] uses the same 4-bit S-box as the lightweight block cipher Piccolo, which is designed to
have a very small hardware implementation. The S-box has the optimal nonlinearity, the optimal
algebraic degree, and the optimal differential delta uniformity, i.e. Nonlin(S) = Nonlin(S−1) = 4,
deg(S) = deg(S−1) = 3, and δ(S) = δ(S−1) = 4.

2.4.8 LAC

S = [14, 9, 15, 0, 13, 4, 10, 11, 1, 2, 8, 3, 7, 6, 12, 5]

The 4-bit S-box of LAC [72] has the same cryptographic properties as Joltik’s. However, it
is based on one of the S-boxes of the LBlock, another lightweight block cipher. LAC does not
require the inverse S-box for its decryption operation. LAC has not made it to the second round
of the CAESAR competition.

2.4.9 Minalpher

S = [11, 3, 4, 1, 2, 8, 12, 15, 5, 13, 14, 0, 6, 9, 10, 7]

Minalpher’s S-box [66] is another 4x4 S-box with the same nonlinearity, algebraic degree, and
δ as the S-boxes of Joltik and LAC. Noteworthy is that it is an involution in order to save space
with the decryption operation.

2.4.10 Prøst

S = [0, 4, 8, 15, 1, 5, 14, 9, 2, 7, 10, 12, 11, 13, 6, 3]

The authors of Prøst [43] have chosen another involutory S-box, also with Nonlin(S) = 4,
deg(S) = 3, and δ(S) = 4. It is designed to have a very small bitsliced implementation. Still, it
has not made it to the second round of the CAESAR competition.

2.4.11 RECTANGLE

S = [9, 4, 15, 10, 14, 1, 0, 6, 12, 7, 3, 8, 2, 11, 5, 13]

S−1 = [6, 5, 12, 10, 1, 14, 7, 9, 11, 0, 3, 13, 8, 15, 4, 2]

RECTANGLE is not part of the CAESAR competition, but it is a recently proposed lightweight
block cipher [73]. It is included because it introduces new design criteria for S-boxes. It contains
a 4-bit S-box that not only has the same optimal nonlinearity, algebraic degree, and δ, but also
satisfies the following criteria. Let F4∗

2 = F4
2 \ (0, 0, 0, 0). Then the following holds:
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• There exist only 2 pairs (x, y) ∈ F4∗
2 × F4∗

2 such that HW(x) = HW(y) = 1 and
#{z ∈ F4

2|S(z)⊕ S(z ⊕ x)) = z} 6= 0.

• There exist only 2 pairs (x, y) ∈ F4∗
2 × F4∗

2 such that HW(x) = HW(y) = 1 and∣∣#{z ∈ F4
2|x · z = y · S(z)} − 8

∣∣ 6= 0.

Additionally, RECTANGLE’s S-box is chosen to be small in hardware.

2.4.12 Overview

Table 2.1 shows a summary of some cryptographic properties of the S-boxes given in Section 2.4.
In this table, ‘1 enc/dec’ means that there are one encryption and one decryption S-box that are
used by the authenticated encryption scheme. ‘1 inv’ denotes an involution S-box and ‘1 enc’
denotes that only one S-box is used by both encryption and decryption, although it is not an
involution. An algebraic degree of a/b means that deg(S) = a and deg(S−1) = b.

S-box Number Width Nonlin(S) deg(S) δ(S)

AES 1 enc/dec 8 112 7 4

iSCREAM 1 inv 8 96 6 16

SCREAM 1 enc/dec 8 96 5/6 16

Ascon 1 enc 5 8 2 8

ICEPOLE 1 enc 5 8 4 8

Ketje/Keyak 1 enc 5 8 2 8

PRIMATE 1 enc/dec 5 12 2/3 2

Joltik 1 enc/dec 4 4 3 4

LAC 1 enc 4 4 3 4

Minalpher 1 inv 4 4 3 4

Prøst 1 inv 4 4 3 4

RECTANGLE 1 enc/dec 4 4 3 4

Table 2.1: Cryptographic properties of S-boxes w.r.t. linear and differ-
ential cryptanalysis attacks.

2.5 Side-Channel Analysis

Over the years, a lot of research has been done on linear and differential cryptanalysis, and on
methods to design ciphers that are robust against those kinds of attacks. However, it has turned
out that even ciphers that are secure against known attacks, can be broken in the physical reality,
due to the emittance of information that is inherent to the physical world. This realisation has
raised the field of side-channel analysis (SCA), where a side channel is a physically measurable
quantity. It started with timing attacks [45], and has since been extended to, for instance,
power analysis [44], SCA using electromagnetic radiance [32], optical properties [31], and acoustic
cryptanalysis [33]. This section discusses power analysis in more detail, as this attack has proven
to be very powerful and to be relatively easy to mount. In addition, several variants exist.
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2.5.1 Power Analysis Attacks

Differential power analysis (DPA) was introduced in [44] and relies on the fact that the power
consumption of a device performing an operation is related both to that operation and to the
data the operation is performed on. For instance, when switching the value of a bit in a register
from 1 to 0 or from 0 to 1 consumes power, an operation that has to switch more values will most
likely consume more power. The power consumed by the data is the dominant factor here. An
attacker can therefore measure the power consumption of a device and learn information about
the potentially secret data in the device.

Assume that a device performs a keyed cryptographic operation on a known part, e.g.
encryption of a chosen plaintext or decryption of a chosen ciphertext, and the goal is to extract
the correct key. Without loss of generality, it is assumed that the device computes the encryption
E(x, k) of a known x and the attacker wants to find k. We will assume that E consists of
multiple rounds that each process a part of the key kj , called a subkey, for which exhaustive
search is feasible. This holds for all commonly used block ciphers. In more detail, DPA works as
follows [44].

First, collect N power traces pi(t), i.e. the power consumption traces of the device computing
E(xi, k) for N different xi at time t. Then decide on a selection function V (xi, kj) that depends
on the plaintext xi and the subkey kj and that selects a (bit of a) sensitive intermediate value
that leaks information. One example is the least significant bit of the output of the S-box in
an AES-like block cipher, i.e. V (xi, kj) = LSB(S(xi,j ⊕ kj)), where xi,j is the jth part of the ith

plaintext. We start by bruteforcing k0. For all possible subkey guesses k′, compute V (xi, k
′). If

this yields 0, put the corresponding power trace pi(t) in the set Mean0. Otherwise, put it in
Mean1. After having split all N traces, compute the differential trace ∆(t) as the difference
between the average of the traces in Mean0 and the average of the traces in Mean1. This is
called the distance-of-means (DoM) distinguisher.

When k′ 6= k0, the output of V (xi, k
′) will be 1 for about half the plaintexts xi, which implies

that limN→∞∆(t) = 0. However, when k′ = k0, ∆(t) will show spikes in the regions where the
LSB is correlated to the values that are processed. The subkey guess k′ for which the differential
is maximal will be the correct subkey k0. To get the full key k, this whole process can be repeated
for the other subkeys kj .

2.5.2 Variants

The above selection function and distinguisher were introduced in the original paper of Kocher et
al., but other choices can be made as well. One variant that is frequently used is often called
correlation power analysis (CPA) [15]. Instead of using one bit as selection function, a more
realistic power consumption model is introduced. The idea is that power consumption is only
indirectly related to the data that is being processed, but this can be estimated better by taking
into account the type of device.

For instance, for register outputs in ASICs, only the number of transitions from 0 to 1 and
from 1 to 0 are relevant. All bits contribute equally to the power consumption, both kinds
of transitions consume the same amount and static power can be ignored. This is called the
Hamming distance model and typically applies to hardware implementations. More precisely, let
r denote the previous register value. Then V (xi, k

′) = HD(S(xi ⊕ k′), r).
For software implementations of cryptographic operations including smartcard implemen-

tations, the bus usually leaks and the Hamming weight model, V (xi, k
′) = HW(S(xi ⊕ k′)),

is therefore more suitable. This assumes that the power consumption is proportional to the
Hamming weight of the data, thus ignoring data that was processed before. This is typical for
pre-charged buses.
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Another difference is that CPA uses Pearson’s correlation coefficient as a distinguisher instead
of the DoM. Let X and Y denote variables, let E denote the expectation value, µX the mean of X,
and σX the standard deviation of X. Then Pearson’s correlation coefficient ρ can be computed as

ρ(X,Y ) =
E((X − µX)(Y − µY ))

σXσY
.

It can be used to measure the linear correlation between the real output of a sensitive intermediate
value and the hypothetical output computed with a power consumption model.

More complicated power models are also possible, such as weighted models when not all bits
contribute equally, signed models when a 0-to-1 transition consumes more or less power than a
1-to-0 transition, and dedicated models for combinational circuits. For the distinguisher, other
statistical tests can also be used, such as Student’s t-test, principal component analysis [71], and
mutual information analysis [34].

2.5.3 Masking

Countermeasures for power analysis attacks aim to remove the correlation between power con-
sumption and intermediate data. This is done by either hiding the correlation or by masking it.
Hiding means that the correlation is reduced by treating the power consumption. Examples of
hiding techniques in hardware are pre-charged dual rail logic, power signal filtering, desynchro-
nisation, and noise generation. In software, time randomisation can be used. Such techniques
come at a cost of more expensive logic, a bigger total power consumption which can especially be
problematic to small devices, or a slower computation.

Masking means that the correlation is reduced by transforming the intermediate data [22, 50].
Masking also comes at a cost of a slower computation or a larger area consumption. A random
mask conceals the secret data at the start of the cryptographic operation and all intermediate
values are computed using the concealed data. Only at the last step can the random mask be
removed to still produce the correct output. How to mask a certain operation depends on the
operation. For table lookups, a masked table needs to be computed.

Boolean Masking

Boolean masking means that the secret data x is masked by x′ = x⊕ rx, where rx is a random
mask. Bitwise Boolean functions can be masked in this way. This is trivial for the XOR operation,
where one can simply XOR the masked data, z′ = x′ ⊕ y′, and the masks, rz = rx ⊕ ry. For the
AND operation, z′ = x′ ∧ y′ is easy to compute, but rz = (rx ∧ y′)⊕ (ry ∧ x′)⊕ (rx ∧ ry) requires
some more computations. The AND operation is therefore, like OR, more expensive to mask.

Linear transformations, bitwise permutations, and fixed rotate or shift operations can also be
masked by Boolean masking. The operation has to be performed on both the masked data and
the mask itself. Data-dependent rotations are more complicated, as the rotation amount needs to
be masked by an arithmetic mask.

Arithmetic Masking

Arithmetic masking means that the secret data x is masked by x′ = (x− rx) mod 2k, where r
is again a random mask. This is more applicable to arithmetic operations such as addition and
multiplication modulo 2k. Masking an addition is straightforward, but multiplication is more
difficult, as one has to compute z′ = x′y′ mod 2k and rz = (rxy

′ + ryx
′ + rxry) mod 2k. This is

analogous to the AND operation in the case that k = 1.
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When masking a cipher, it is sometimes necessary to switch between Boolean and arithmetic
masks and vice versa. Several algorithms have been proposed, but some turned out to be insecure
or are very inefficient. An overview of some methods can be found in [26].

Masking will protect against first-order DPA attacks, but higher-order attacks that combine
multiple samples from within a power consumption trace are still possible and have been quite
successful [44, 49]. More than one mask can be added to protect against second-order attacks. In
general, an nth-order masking scheme will protect against an nth-order DPA attack (and lower),

but can be broken by an (n+ 1)
th

-order attack (or higher).

Low-Entropy Masking

As explained before, masking comes at a substantial cost. As often, in practice, a trade-off can
be made between efficiency and security. Masking schemes have been proposed that reduce the
size of the mask alphabet while retaining security against SCA attacks to a certain extent. Such
masking schemes are called low-entropy masking schemes (LEMS). It has been shown that instead
of the usual full entropy 256 possible masks for the AES S-box, only 12 values are sufficient to
protect against first- and second-order DPA [56].
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Chapter 3

Metrics for Side-Channel Leakage
Resistance

Although countermeasures for SCA attacks exist, they do not fully prevent all information leakage
and come with substantial costs. It is therefore interesting to be able to design a cipher in such
a way that it will inherently be as resistant to SCA attacks as possible. This chapter discusses
several metrics in chronological order of appearance that have been defined to measure the
side-channel leakage or the resistance to SCA attacks.

3.1 Number of Measurements

Two hardware countermeasures against DPA are introducing noise, i.e. reducing the Signal-to-
Noise Ratio (SNR), and randomly disarranging the time secret data is being processed. The SNR

is here defined as SNR = V ar(Q)
V ar(A) , where Q is power consumption caused by the computation

and A is additive noise. For both countermeasures, its effect can be determined at the design
time, even before the implementation has started. This has its benefits, because having a lot of
design iterations is costly. There are other factors that are less predictable at the design time,
but setting those to the worst case will allow one to compute a lower bound for the number of
measurements required to successfully perform DPA using ρmax [47]:

ρmax =
ρ(H,Q)√
1 + 1

SNR

p̂

√
V ar(P )

V ar(P̂ )
,

where p̂ denotes the maximum probability for the probability distribution of the time of processing
secret data, ρ(H,Q) is Pearson’s correlation coefficient of the hypothetical power consumption H

and the actual ‘signal’ Q, and F =
√

V ar(P )

V ar(P̂ )
depends on the device.

The SNR and p̂ can be computed at design time and are determined by, for instance, the
chosen logic style and chosen way of disarranging the time. ρ(H,Q) on the other hand, depends
on how well one knows the power consumption characteristics of a device. Also, F is hard to
assess at the design time. In the worst case, ρ(H,Q) = F = 1. The minimum number of samples
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nmin can then be computed as follows:

nmin = 3 + 8

 Zα

ln
(

1+ρmax

1−ρmax

)
2

.

The quantile Zα determines the distance between the distributions with ρ = 0 and ρ = ρmax.
Experiments showed that α = 0.9 appears to be a reasonable value.

3.2 Signal-to-Noise Ratio

There are three sources of noise when performing DPA: the activity of the rest of the circuit N1,
the jitter on the attacked gate N2, and the bias introduced by the S-boxes N3 [39]. Assuming the
first two are low enough, the third makes is possible to extract bits of the (sub)key, although
there will also be ‘ghost peaks’ for wrong candidate keys. They are modelled as noise in the
following definition of the SNR, where Nk is the size of the keyspace and Sig = 1

Nk
ΣkSig(k) is

the signal mean:

SNR(Sig) =
Sig(0)− Sig√

1
Nk

Σk
(
Sig(k)− Sig

)2 .
Computing the SNR of the DPA signal of an S-box S : Fn2 → Fm2 then leads to the typical

values as in Table 3.1.

SNR S-box characteristic

1
m Lower bound for unbalanced S-boxes, reached only by

rank 1 affine S-boxes.

1 Lower bound for balanced S-boxes, reached only when
m is a perfect square.

√
m Rank m affine S-boxes; no S-box or linear S-box.√
2n/m Approximative lower bound for bent S-boxes.

3.6 DES S-Box 1 (n = 6, m = 4).

9.6 AES SubBytes (n = m = 8).

9.8 A Maiorana-McFarland bent S-box (n = 8, m = 4) [17].√
2n Upper bound for balanced S-boxes.

Table 3.1: The SNR of the DPA signal of several S-boxes [39].

The less linear an S-box, the higher the DPA SNR becomes, and vice versa. In general, the best
shielded against linear or differential cryptanalysis, the more vulnerable to a DPA attack [18, 62].

3.3 Transparency Order

Countermeasures for DPA attacks are frequently added only to the implementation. The
transparency order was introduced to quantify the resistance of an S-box against DPA attacks [62].
It is built on the assumption that the previous register value that is replaced by the ciphertext is
constant, although in practice it will depend on the type of implementation. In other words, the

16



transparency order assumes the Hamming weight power consumption model and is not trivially
extendable to different models. The transparency order TO(S) of an S-box S : Fn2 → Fm2 is
defined as:

TO(S) = max
β∈Fm

2

|m− 2HW(β)| − 1

22n − 2n

∑
a∈Fn∗

2

∣∣∣∣∣∣∣∣
∑
v∈Fm

2

HW(v)=1

(−1)v·βWDaS(0, v)

∣∣∣∣∣∣∣∣
 ,

where the dot product a · b =
⊕m−1

i=0 aibi, and WDaS(u, v) denotes the Walsh transform of the
derivative of S with respect to a. WDaS(0, v) equals the correlation coefficient between x 7→ v ·S(x)
and x 7→ v · S(x+ a).

The smaller the transparency order of an S-box, the higher its resistance to DPA attacks,
assuming the Hamming weight power consumption model is actually suitable. 0 ≤ TO(S) ≤ m.
TO(S) = m if every coordinate function of S is bent. There is a trade-off between nonlinearity
and the transparency order [18].

3.4 Success Rate

An adversary performing a side-channel attack is successful if the key is correctly identified at
classification. The success rate can be determined by classifying r randomly chosen measurements
out of the key extraction measurement series [35]. The random choice is repeated one thousand
times and the success rate is then defined as the percentage of success in determining the correct
key value. The success rate depends on actual power measurements and is therefore of little use
at the design stage of a cipher.

3.5 New Signal-to-Noise Ratio

The previous SNR metric treats traces as random variables, while they are in fact functions of
the ciphertext. The previous SNR and transparency order are also suboptimal because they treat
ghost peaks as noise, although they are predictable and can be used. A newer definition of the
SNR elaborates on the transparency order, but uses the maximum likelihood estimator as DPA
distinguisher [38].

Let ε = HD(kg, kc) be the Hamming distance between the key guess kg and the correct key kc.
Then the set {∆(ε), ε 6= 0} are the ghost peaks. Let tr denote the trace operator trf =

∑
x f(x),

and τk the translation of vector k being τk(·) 7→ k ⊕ ·. Then, assuming S-box S is balanced, a
DPA attack will be easier when the following metric yields a higher value:

min
ε 6=0

∑
e∈Fm

2

tr
∑

b,b′∈Nm

(−1)Sb◦τe ·
(

(−1)Sb′◦τε − (−1)Sb′
)2

.

3.6 Guessing Entropy

Previous metrics do not allow claims that one countermeasure is better than the other, as they
depend on the attacker model. An information theoretic metric and an actual security metric
were proposed to allow to make such claims [68].
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The information-theoretic metric evaluates the amount of information in the side-channel
leakage, measured by an unbounded adversary in terms of measurement queries. The mutual
information between the key class variable C and the random vector denoting the side-channel
observations generated with q queries Lq, is then:

I(C; Lq) = H[C]−H[C|Lq] = EcH
′q
c,c,

where H[C] = Ec − log2 Pr[c] is the entropy of the key class variable C before any side-channel
attack has been performed and H′qc,c∗ = H[C]−Hq

c,c∗ is an entropy reduction matrix.
The latter metric is more flexible than the success rate and measures the average number of

key candidates to test after the side-channel attack. In a side-channel key-guessing experiment,
let c ∈ C be the equivalence class of the correct key and let the adversary output a guess vector
[g1, g2, . . . , g|C|] with different key candidates sorted according to their likelihood. The output of
the experiment is i such that gi = c. Then the guessing entropy metric is defined as the expected
value of that experiment. The guessing entropy directly indicates the average remaining workload
of the side-channel adversary, in contrast to the success rate.

3.7 Confusion Coefficient

The success rate is the ultimate metric that incorporates the effects of all factors including
algorithms, implementations, and attacks. However, it is unclear what kind of intrinsic features
instilled in cryptographic algorithms lead to SCA-related properties and to what extent. The
confusion coefficient has been introduced to address this [30].

Let the confusion coefficient κ over two subkeys (ki, kj) be defined as:

κ(ki, kj) = E[(V |ki − V |kj)2],

where V (x, k) is a selection function that depends on both a known plaintext or ciphertext x, and
the key k, and where V |ki denotes the output of V for a fixed x and the key ki. For instance, for
the classic single-bit DPA attack, V (x, k) = LSB(S(x⊕k)), having outcomes of either 0 or 1. The
confusion coefficients for all possible keys form a discrete distribution and fall in only a few values,
called the characteristic confusion values of an S-box. Ideally, in the case of DPA, κ(ki, kj) = 0.5
for any ki and kj . For CPA on AES, the selection function is 8 bits, so the ideal value would be 4.
It is claimed that when the variance σ2 of this distribution is lower, key candidates behave more
similarly and randomly and the cipher will therefore be more resistant to DPA attacks. However,
recent simulation results suggest that the exact opposite is true [40].

It has been demonstrated how the confusion coefficients have a direct effect on the success
rate [30]. Let the three-way confusion coefficient κ̃ can be defined as:

κ̃(kh, ki, kj) = E[(V |kh − V |ki)(V |kh − V |kj)].

Then the asymptotic success rate of single-bit DPA is:

SR = ΦNk−1

(
δ0
2

κ
√
n√

K + (δ0/2)2(K− κκT )

)
,

where Φ(x) is the cumulative distribution function of the standard normal distribution, δ0 is the
SNR of the implementation, and K is the (Nk − 1)× (Nk − 1) confusion matrix for the correct
key kc with elements κij = κ̃(kc, kgi, kgj). Lower confusion coefficients imply a higher success
rate, and therefore a more resistant S-box.

In [27], confusion coefficients have been extended to higher-order DPA attacks and in the
presence of masks.
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3.7.1 Applying the Confusion Coefficient

To further understand how the confusion coefficient behaves in practice and to see if it matches
our intuitions, we computed all distributions for several scenario’s. We use the following power
consumption models as selection functions.

• Hamming weight: V (x, k) = HW(S(x⊕ k)).

• Hamming distance: V (x, k) = HD(S(x⊕ k), x). This corresponds to a RAM-based FGPA
implementation that takes one cycle per round, ignoring the linear permutation and attacking
the first round [69].

• Value: V (x, k) = x⊕ k.

• Weighted: let n = |k|, let X = S(x⊕ k), let Xi denote the ith bit of X, and let w(i) denote

a function that assigns a weight to a bit i. Then V (x, k) =
∑n−1
i=0 w(i)Xi. Here, w(i) = 0.8

if i < n−1
2 , w(i) = 1 if i = n−1

2 , and w(i) = 1.2 if i > n−1
2 .

• Pairs: V (x, k) =
∑n−2
i=0

∑n−1
j=i+1XiXj , where again X = S(x⊕ k). Note that this model is

nonlinear.

We apply these to all S-boxes of the ciphers mentioned in Section 2.4 for the following
scenario’s.

• First-order confusion coefficient without any mask.

• First-order confusion coefficient with a low-entropy masking scheme (LEMS).

• Second-order confusion coefficient with a LEMS.

• Second-order confusion coefficient with a full-entropy masking scheme.

The LEMS are taken from [56].

• 4x4 S-boxes: {0, 1, 6, 7, 10, 11, 12, 13}.

• 5x5 S-boxes: {0, 3, 12, 15, 21, 22, 25, 26}.

• 8x8 S-boxes: {3, 24, 63, 85, 96, 110, 140, 165, 178, 203, 214, 249}.

All individual results can be found in Appendix A. To be able to compare the distributions
for S-boxes of different sizes, they are normalised according to the coefficient of variation, i.e.
cv = σ

µ . A higher cv implies being more resistant to power analysis attacks, assuming that the
effects of the mean and that of the variance are approximately similar.

We first investigate whether the confusion coefficient reflects the expected results for a LEMS.
In the case of a first-order attack, the confusion coefficient should be zero for any linear power
consumption model. This indeed holds for the Hamming weight, value, and Hamming distance
model. However, this is not exactly true for the weighted power model, although the mean is
very close to zero. The pairs model also yields a confusion coefficient of zero, which is somewhat
unexpected as the model is nonlinear and the LEMS are designed for a linear power consumption
model.

For a second-order attack, we expect the confusion coefficient to behave just as good for
a LEMS as for a full-entropy masking scheme. It can be seen that this holds for all selection
functions except for the nonlinear pairs model, where both the mean and the variance are lower
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for the LEMS scenario. This is to be expected, as a smaller set of possible mask values will never
perform better than the full set of masks.

Then we look at whether the confusion coefficient respects the differences between S-boxes
and whether it is possible to say anything meaningful about the S-boxes in practice. Figure 3.1
shows the coefficients of variation, sorted by coefficient of variation for the Hamming weight
model in the first-order scenario without any mask. When looking at Figure 3.1a and Figure 3.1b
separately, a number of things can be seen.

First, the order of the S-boxes is mostly preserved by different power consumption models
and different scenario’s. S-boxes that have a small cv typically have a small cv in every case. The
graph for the value-based power consumption model stands out the most, but this model only
really applies to a single-bit setting and is merely included to see how the confusion coefficient
responds to it. It is noteworthy that the Hamming distance model shows some spikes with the
S-boxes of Ketje, Keyak, and ICEPOLE in the first-order scenario and some negative spikes with
all 5-bit S-boxes in the second-order scenario. It remains unclear why this is the case.

Secondly, it can be seen in Figure 3.1 that the 8-bit S-boxes are all nearly at the bottom,
implying that either larger S-boxes are easier to attack according to the confusion coefficient, or
the mean of the confusion coefficient distribution is more decisive that its variance. However,
apparently the S-box of Ketje and Keyak is less DPA-resistant than SCREAM’s S-box and the
encryption S-box of Joltik is less DPA-resistant than the one used in Ascon, if the confusion
coefficient is to be believed. Simulation results and results on real data need to confirm this. The
results of our simulations are discussed in Section 3.11.

So far, we have seen how the confusion coefficient reflects the influence of a LEMS and what
can be stated about different S-boxes. When Figure 3.1a and Figure 3.1b are combined, it can
also be seen how the confusion coefficient is largely unaffected by the order of the attack. The
results attained in the first-order case without any mask propagate to the second-order case with
a full-entropy masking scheme most fittingly for the Hamming weight power consumption model,
as is expected for a Boolean masking scheme.

3.8 Modified Transparency Order

The definition of the transparency order lead to some inconsistencies [20]. First of all, it is
redundant in terms of considering the maximum over all β ∈ Fm2 . The transparency order does in
fact not depend on β. Furthermore, it was claimed that TO(S) = m for an S-box S that only has
bent and pairwise complement coordinate functions. However, DPA should then not be possible
at all under a Hamming weight power model.

Instead, the transparency order should be defined as follows:

TO(S) = max
β∈Fm

2

m− 1

22n − 2n

∑
a∈Fn∗

2

m∑
j=1

∣∣∣∣∣
m∑
i=1

(−1)βi⊕βjCSi,Sj
(a)

∣∣∣∣∣
 ,

where Cf1,f2(ω) denotes the cross-correlation spectrum between two Boolean functions and is
defined as Cf1,f2(ω) =

∑
x∈Fn

2
(−1)f1(x)⊕f2(x⊕ω).

3.9 Second Minimum Distance

Another metric was proposed [65] that only considers permutation S-boxes, implying n = m. We
call the set of all n-tuples

DS = {(Dkg,1(S), . . . , Dkg,n(S))}kg∈Fn
2
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(a) First-order without any mask.
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(b) Second-order with a full-entropy masking scheme.

Figure 3.1: The cv of confusion coefficient distributions of S-boxes.
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the Relative Power Spectrum (RPS) of S, that contains RPS vectors with differential traces Dkg,j

per coordinate function j, for each key candidate kg.
The RPS vector for the correct key is ((−1)β1 , . . . , (−1)βn), where β = (β1, . . . , βn) is the

precharge logic. In a scenario where there is noise, an attacker should consider the key belonging
to the RPS vector with the closest distance from the vector for the correct key. For permutation
S-boxes S and S′ that are affine equivalent as S′(x) = S(Ax⊕ b), the RPSs of S and S′ will be
permutations of each other, but this does not hold for (extended) affine equivalence in general.

Consequently, we can create a distance profile of S by computing all Euclidean distances from
((−1)β1 , . . . , (−1)βn) to all RPS vectors in the RPS of S. The minimum distance occurs for the
correct key, but the second minimum distance D2n(S) can be used as metric. A lower second
minimum distance implies that false candidates are closer to the correct key, which implies a
DPA attack will be harder.

3.10 Comparison

Most of these metrics take a different approach at measuring the effectiveness of an SCA attack
or the resistance of a given S-box or cipher to an SCA attack. It is therefore not surprising that
they are used in different ways and that they yield different results for the CAESAR ciphers.

The number of measurements, the success rate, and the guessing entropy depend on actual
measurements. They are therefore on their own not useful at the design stage of a cipher, although
they can theoretically be approximated using a model. The other metrics only depend on the
S-box and on certain assumptions. For instance, most metrics assume that there is added noise
that follows a Gaussian distribution and is key-independent. For the S-boxes given in Section 2.4,
the metrics yield the results as given in Table 3.2, assuming a first-order attack scenario without
any mask and a Hamming weight power model.

Recall that the SNR, (modified) transparency order, and second minimum distance should be
lower to achieve a higher resistance to DPA attacks, while the variance of the confusion coefficient
should be higher. The results from Table 3.2 are depicted graphically in Figure 3.2, sorted by the
confusion coefficient variance. Note that the blue graphs (SNR, transparency order, modified
transparency order) are plotted against the left blue axis and the orange graphs (second minimum
distance, confusion coefficient variance) are plotted against the right orange axis, and we are not
interested in absolute values. It can clearly be seen that the SNR, the modified transparency
order, and the confusion coefficient are consistent in their predictions on which S-box is more
resistant to DPA attacks. This helps in making these metrics more credible as being useful.

The original transparency order and the second minimum distance metric are less consistent
with these metrics, but it has been pointed out in [20] that the first contains several errors and
this could account for the deviation that especially shows for the 5-bit S-boxes. The second
minimum distance appears to be fairly consistent in the 5-bit case, but this holds not so much for
the other sizes. This metric has only recently been proposed and requires further research.

Regarding the CAESAR competition, the SNR, modified transparency order, and confusion
coefficient metrics expect Minalpher, Ascon, and the inverse of SCREAM to have the most
DPA-resistant S-boxes of sizes 4x4, 5x5, and 8x8, respectively.

3.11 Simulations

We performed first-order CPA simulations on the ‘best’ and ‘worst’ 4-bit, 5-bit, and 8-bit S-boxes,
i.e those of Minalpher, Joltik, Ascon, Ketje/Keyak, and the decryption S-boxes of SCREAM
and AES, to see if the results predicted by the metrics can be related to the simulation results.
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S-box SNR TO
Modified
TO

Second
minimum
distance

Confusion
coefficient
(µ;σ2)

AES 9.600 7.860 6.916 0.292 (4.016; 0.111)

AES−1 10.583 7.851 6.911 0.278 (4.016; 0.081)

iSCREAM 8.667 7.700 6.763 0.249 (4.016; 0.151)

SCREAM 7.921 7.589 6.605 0.247 (4.016; 0.194)

SCREAM−1 6.779 7.600 6.628 0.247 (4.016; 0.288)

Ascon 3.015 4.258 2.839 0.200 (2.581; 0.518)

ICEPOLE 4.025 4.516 3.548 0.395 (2.581; 0.196)

Ketje/Keyak 4.472 4.516 3.871 0.447 (2.581; 0.118)

PRIMATE 3.563 4.839 3.613 0.316 (2.581; 0.318)

PRIMATE−1 3.536 4.710 3.516 0.355 (2.581; 0.318)

Joltik 3.108 3.667 2.567 0.424 (2.133; 0.168)

Joltik−1 2.685 3.467 2.467 0.424 (2.133; 0.329)

LAC 2.946 3.667 2.567 0.442 (2.133; 0.222)

Minalpher 2.129 3.467 2.300 0.342 (2.133; 0.704)

Prøst 2.685 3.467 2.467 0.342 (2.133; 0.329)

RECTANGLE 2.579 3.400 2.233 0.198 (2.133; 0.383)

RECTANGLE−1 2.187 3.333 2.200 0.319 (2.133; 0.651)

Table 3.2: Cryptographic properties of S-boxes w.r.t. SCA attacks.
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(b) 5x5 S-boxes.
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Figure 3.2: Cryptographic properties of S-boxes w.r.t. SCA attacks.
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We used uniformly random inputs, a Hamming weight power model, and added random white
Gaussian noise with SNR = 0.1 to simulate a physical device. We plot the relative rank r′ of the
correct subkey against the number of traces N in Figure 3.3, where the relative rank r′ is defined
as r′ = r−1

2|k|−1 + 1, to be able to compare S-boxes of different sizes. Every point on the graph
represents the average of 100 iterations to account for the randomness. It can be seen that while
the metrics are clear on which S-box should be least and which one should be most resistant to
DPA attacks, this can hardly be related to the CPA simulation results, where all S-boxes behave
fairly similar. Adding more noise does not change this behaviour. Even the small differences of
the simulations between the S-boxes are unfortunately hardly reflected by the metrics. Therefore,
it appears that metrics are not of much use at the design stage, even when the power model
adequately reflects reality.
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Figure 3.3: CPA simulation results under a Hamming weight power
model, SNR = 0.1.
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Chapter 4

Reducing Nonlinear Operations
for Masking

It can be seen that SCA attacks remain a serious threat to the security of cryptographic algorithms
in practice and that this is no different for the newly proposed authenticated encryption schemes.
It is known that masking can be expensive, although low-entropy masking schemes allow us to
make some trade-off, and for that reason, it is worth to investigate how much adding a masking
scheme will actually cost for the various CAESAR candidates and for RECTANGLE. For Boolean
and polynomial masking schemes, the cost of masking linear operations such as XOR gates are
linear in the number of operations, while they are quadratic for, for instance, AND gates. For this
reason, the nonlinear parts are reduced first. Chapter 5 discusses the costs of masking the linear
parts.

4.1 Multiplicative Complexity

The fact that masking nonlinear operations comes with larger costs has lead to the notion
of multiplicative complexity [10]. Because S-boxes are usually the only nonlinear part in the
cryptographic algorithm, it suffices to only look at the S-boxes of the CAESAR candidates for
now. The goal is to achieve an S-box implementation with as few AND/OR gates as possible, i.e.
with a multiplicative complexity as low as possible.

For 4x4 S-boxes, it is known by exhaustive search what multiplicative complexity is optimal
and which S-boxes achieve this value, while retaining optimal security properties related to
traditional cryptanalysis [36, 70]. The so-called ‘Class 13’ S-boxes require only 4 AND and 4 XOR

operations. By combining certain 4-bit S-boxes 8-bit variants were constructed that achieve a
fairly low multiplicative complexity (11 ANDs and 25 XORs, compared to AES’s 32 ANDs and 83
XORs [9]), but it is not generally known what is optimal for 5x5 or 8x8 S-boxes, or how to find the
optimal implementation for a given S-box.

4.2 Logic Synthesis

Finding optimal circuit implementations for a given function is an old problem in electronics.
Although the (unbounded) circuit minimisation problem is ΣP

2 -complete, several heuristic al-
gorithms have been successful in industry. After Karnaugh maps and the Quine-McCluskey
algorithm, the Espresso tool by IBM became much used [14]. However, the tool only performs
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two-level minimisation. This means that circuits are viewed as sum-of-products (SOPs) and
minimisation does not make use of terms that are shared for multiple outputs. The University of
California at Berkeley subsequently created misII [12] that performs multi-level minimisation and
the well-known SIS package on top of that [67]. For Windows, the tool Logic Friday provides
a GUI on top of Espresso and misII. A more recent tool is Berkeley’s ABC [13].

Attempts to design optimal circuits in the context of S-boxes using these tools have not proven
very successful. One reason is that the tools are incapable of dealing with XOR gates. Minimising
Boolean formulas is typically done over the basis {AND, OR, NOT}, and in hardware NAND and NOR

gates are more efficient and therefore preferred. In cryptography, however, XOR gates are linear
and therefore cheaper with respect to the cost of masking.

4.3 Multi-Level Minimisation with XOR

Sometimes, Boolean formulas can be expressed much more efficiently when XORs are used. A
line of research has explored methods to minimise circuits with XOR gates [55]. Several heuristic
algorithms have been suggested, such as AOXMIN-MV [29] and KGPMIN [21]. They have also
been compared to SIS [58].

For exclusive-sums-of-products (ESOPs), more heuristic algorithms exist (e.g. EXORCISM-
4 [51]), but there are also some exact minimisation methods, such as min-tau2 [41]. Most
heuristic algorithms are aimed at optimising very large functions, as that is a more common
goal in practice, and are therefore focussed on speed and memory efficiency. In the S-box case,
however, the function is only very small and an exact optimal solution can usually be found in a
feasible amount of time.

One remaining problem with this {AND, OR, XOR}-minimisation1 is that it is usually not trivial
to express constraints such as that you are looking for the minimum number of nonlinear gates.
The following completely different approach solves this problem.

4.4 A SAT Solver-Based Approach

The Boolean satisfiability problem, SAT, was one of the first problems proven to be NP-complete.
It is the problem of determining whether there exists a valuation for variables that satisfies a
given Boolean formula. For example, the formula a ∧ ¬a is unsatisfiable; there does not exist a
value for a such that a ∧ ¬a becomes true. Despite that the problem is in NP, there is a large
community dedicated to create SAT solvers that are able to find the solution to quite large sets
of formulas. International competitions are being held to create the fastest and best SAT solver.
If a SAT solver terminates, it will either output SAT along with a valuation that satisfies the
formulas, or UNSAT.

The decisional multiplicative complexity problem (DMC) is defined as: “does there exist
a circuit with at most p AND gates that implements an S-box S?” Because DMC ∈ NP2, a
polynomial reduction can be made to SAT. This means that we can use the progress made in
the SAT solver community for the benefit of circuit minimisation. This will only be feasible for
small S-boxes (e.g. with n = m ≤ 5), but it has proven to be a successful approach [23, 24, 54].
This approach is also optimal, if we are able to find a value p that outputs SAT for which p− 1
outputs UNSAT.

1NOT can be implemented by XOR, e.g. ¬a = a⊕ 1, and is therefore not considered separately.
2A formal proof is omitted, but it is not hard to imagine how it would look like. It can clearly be verified in

polynomial time that a given circuit has a number of AND gates ≤ p by counting them. Verifying that the circuit
correctly implements a given S-box is similar to the polynomial verification procedure of CSAT.
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In our reduction to SAT, we use the following notation for variables. The notation is borrowed
from [54]. Note that in [24], q and t are swapped.

• xi represent S-box inputs.

• yi represent S-box outputs.

• qi represent binary gate inputs.

• ti represent binary gate outputs.

• ai represent all connections.

All formulas are first written in algebraic normal form (ANF) and later converted to conjunctive
normal form (CNF) using Bard’s tool3 [3]. All binary gate inputs are written as being equal to a
linear combinations of S-box inputs and previous gate outputs, to represent an unlimited number
of XOR gates. Similarly, the S-box outputs are equal to a linear combination of S-box inputs and
gate outputs. The p AND gates are hard-coded. For instance, for a 4x4 S-box with p = 3, the
following prototype will be used, where concatenation denotes a logical AND, and + a logical XOR.

q0 = a0 + a1x0 + a2x1 + a3x2 + a4x3

q1 = a5 + a6x0 + a7x1 + a8x2 + a9x3

t0 = q0q1

q2 = a10 + a11x0 + a12x1 + a13x2 + a14x3 + a15t0

q3 = a16 + a17x0 + a18x1 + a19x2 + a20x3 + a21t0

t1 = q2q3

q4 = a22 + a23x0 + a24x1 + a25x2 + a26x3 + a27t0 + a28t1

q5 = a29 + a30x0 + a31x1 + a32x2 + a33x3 + a34t0 + a35t1

t2 = q4q5

y0 = a36x0 + a37x1 + a38x2 + a39x3 + a40t0 + a41t1 + a42t2

y1 = a43x0 + a44x1 + a45x2 + a46x3 + a47t0 + a48t1 + a49t2

y2 = a50x0 + a51x1 + a52x2 + a53x3 + a54t0 + a55t1 + a56t2

y3 = a57x0 + a58x1 + a59x2 + a60x3 + a61t0 + a62t1 + a63t2

Now we want this to be true for all input-output pairs of the S-box, so 2n copies of this formula
set are concatenated, in which all ai remain the same, but all other variables get renamed with new
indices. For example, the first formula of the second copy will be q6 = a0+a1x4+a2x5+a3x6+a4x7.

Finally, to bind the actual S-box to this description, it can be added as a simple truth table,
although an algebraic description is also possible. For instance, if n = m = 4 and S(3) = 12,
the corresponding line of the truth table can be added with the following set of equations, as
310 = 00112 and 1210 = 11002.

3A link to a download can be found at http://www.cryptosystem.net/aes/tools.html.
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0 = x12

0 = x13

0 = 1 + x14

0 = 1 + x15

0 = 1 + y12

0 = 1 + y13

0 = y14

0 = y15

Various SAT solvers can be used to attempt to find a solution to this set of formulas. Recent
versions of MiniSat and CryptoMiniSat4 were used to obtain the results in Table 4.1 on the
multiplicative complexity of CAESAR S-boxes and RECTANGLE. Their proofs can be found in
Section 4.5.

S-box
Multiplicative
complexity

AES ≤ 32 [9]

AES−1 ≤ 32 [9]

iSCREAM ≤ 12 [37]

SCREAM ≤ 11 [37]

SCREAM−1 ≤ 11 [37]

Ascon 5

ICEPOLE 6*

Ketje/Keyak 5

PRIMATE ∈ {6, 7}*
PRIMATE−1 ∈ {6, 7, 8, 9, 10}*
Joltik 4

Joltik−1 4*

LAC 4*

Minalpher 5*

Prøst 4

RECTANGLE 4

RECTANGLE−1 4*

Table 4.1: Multiplicative complexity of CAESAR S-boxes and RECT-
ANGLE. The * indicates that Section 4.5 provides a new S-box im-
plementation with less nonlinear gates compared to implementations
published by the designers.

It can be seen that Minalpher has the only 4-bit S-box among these for which an implementation
using 4 AND operations does not exist. Unfortunately, over 1000 CPU hours were insufficient to

4MiniSat 2.2.0 and CryptoMiniSat 4.2.0, mostly using default settings.
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further narrow down the multiplicative complexity of the S-boxes used in PRIMATE or of any of
the 8x8 S-boxes.

4.5 Multiplicative Complexity Proofs

4.5.1 Ascon

Theorem 1. The S-box of Ascon has a multiplicative complexity of 5.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 4. For a multiplicative
complexity of 5, the following implementation can be obtained, although the specification of
course already provides a more efficient implementation with 5 AND operations [28].

q0 = 1 + x3 + x4

q1 = 1 + x4

t0 = q0 ∗ q1
q2 = x0 + x2 + x4

q3 = x1

t1 = q2 ∗ q3
q4 = x0 + x1 + x4

q5 = x1

t2 = q4 ∗ q5
q6 = x3 + x4

q7 = x0

t3 = q6 ∗ q7
q8 = x3 + t1 + t2

q9 = x1 + x2

t4 = q8 ∗ q9
y0 = x0 + x1 + x2 + x3 + t1

y1 = x0 + x2 + x3 + x4 + t4

y2 = x1 + x2 + x3 + t0

y3 = x0 + x1 + x2 + x3 + x4 + t3

y4 = x3 + x4 + t2

4.5.2 ICEPOLE

Theorem 2. The S-box of ICEPOLE has a multiplicative complexity of 6.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 5. For a multiplicative
complexity of 6, the following implementation can be obtained:
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q0 = x0 + x3 + x4

q1 = x0 + x3

t0 = q0 ∗ q1
q2 = 1 + x2 + x4

q3 = x2 + x3 + x4

t1 = q2 ∗ q3
q4 = x2 + t0 + t1

q5 = x0 + x2 + x3 + x4 + t1

t2 = q4 ∗ q5
q6 = x0 + x1 + x4

q7 = x1 + x4

t3 = q6 ∗ q7
q8 = x1 + x2 + t0 + t1 + t2

q9 = x0 + x1 + t0 + t1 + t2

t4 = q8 ∗ q9
q10 = 1 + x2 + t1 + t3 + t4

q11 = 1 + x0 + t4

t5 = q10 ∗ q11
y0 = x0 + t0 + t1 + t2 + t5

y1 = x0 + x1 + x2 + x3 + x4 + t2 + · · ·
· · ·+ t3 + t4 + t5

y2 = x0 + x3 + t1 + t2 + t3 + t4 + t5

y3 = x0 + x2 + x3 + x4 + · · ·
· · ·+ t0 + t1 + t2 + t3 + t4 + t5

y4 = x2 + x4 + t0 + t1 + t2 + t4 + t5

4.5.3 Ketje and Keyak

Theorem 3. The S-box of Ketje and Keyak has a multiplicative complexity of 5.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 4. For a multiplicative
complexity of 5, the following implementation can be obtained, although the specification of
course already provides an implementation with 5 AND operations [7, 6].

q0 = x0 + x1

q1 = x1

t0 = q0 ∗ q1
q2 = x0 + x3 + x4

q3 = x0 + x3

t1 = q2 ∗ q3
q4 = x2 + x3

q5 = x3

t2 = q4 ∗ q5
q6 = x2

q7 = x1 + x2

t3 = q6 ∗ q7
q8 = x3

q9 = x4

t4 = q8 ∗ q9
y0 = x0 + t3

y1 = x1 + t2

y2 = x2 + x4 + t4

y3 = t1 + t4

y4 = x4 + t0

4.5.4 PRIMATE

Theorem 4. The S-box of PRIMATE has a multiplicative complexity ∈ {6, 7}.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 5. For a multiplicative
complexity of 7, the following implementation can be obtained:
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q0 = 1 + x0 + x3

q1 = 1 + x1

t0 = q0 ∗ q1
q2 = 1 + x1 + x3

q3 = x0 + x2

t1 = q2 ∗ q3
q4 = x0 + x1 + x4

q5 = x0 + x2 + x3

t2 = q4 ∗ q5
q6 = x0 + x2 + x3 + x4

q7 = 1 + x1 + x2 + x4

t3 = q6 ∗ q7
q8 = x0 + x1 + x2 + x3 + x4

q9 = x2 + t0 + t3

t4 = q8 ∗ q9
q10 = 1 + x0 + x3 + x4

q11 = x0 + x4

t5 = q10 ∗ q11
q12 = 1 + x1 + x2 + t0 + t2 + t3 + t4

q13 = x2 + x3

t6 = q12 ∗ q13
y0 = x1 + x3 + t2 + t3 + t5 + t6

y1 = x0 + x4 + t1 + t2 + t3 + t4 + t5 + t6

y2 = x1 + x2 + x4 + t1 + t3 + t4 + t5

y3 = x0 + x2 + x3 + x4 + t3 + t4 + t5 + t6

y4 = x2 + t0 + t2 + t3 + t4 + t5 + t6

Theorem 5. The inverse S-box of PRIMATE has a multiplicative complexity ∈ {6, 7, 8, 9, 10}.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 5. For a multiplicative
complexity of 10, the following implementation can be obtained:

q0 = x0 + x2 + x3

q1 = 1 + x2 + x4

t0 = q0 ∗ q1
q2 = x0

q3 = x1

t1 = q2 ∗ q3
q4 = x2 + x3 + t0

q5 = 1 + x1

t2 = q4 ∗ q5
q6 = x1 + t1 + t2

q7 = x2 + x4

t3 = q6 ∗ q7
q8 = x2 + t0 + t2 + t3

q9 = x0 + x3 + x4 + · · ·
· · ·+ t1 + t2 + t3

t4 = q8 ∗ q9
q10 = x0 + x2 + x3 + · · ·

· · ·+ t1 + t2 + t3

q11 = x1 + x3 + t0 + t2

t5 = q10 ∗ q11

q12 = x0 + x4

q13 = t0 + t3 + t4 + t5

t6 = q12 ∗ q13
q14 = 1 + x0 + x1 + x2 + x4 + t0 + t1 + · · ·

· · ·+ t3 + t4 + t5 + t6

q15 = x0 + x3 + t0 + t1 + t2 + t4 + t6

t7 = q14 ∗ q15
q16 = 1 + x2 + x3 + t2 + t5

q17 = 1 + x0 + x1 + x4 + t0 + t1 + t2 + · · ·
· · ·+ t3 + t6 + t7

t8 = q16 ∗ q17
q18 = x4 + t2 + t5 + t6 + t8

q19 = 1 + x0 + x1 + x4 + t4 + t7 + t8

t9 = q18 ∗ q19
y0 = x0 + x1 + t0 + t6 + t7 + t9

y1 = t0 + t3 + t6

y2 = t3 + t5 + t6 + t7

y3 = t1 + t2 + t4

y4 = x1 + t0 + t4 + t8
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4.5.5 Joltik

Theorem 6. The S-box of Joltik has a multiplicative complexity of 4.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 3. For a multiplicative
complexity of 4, the following implementation can be obtained:

q0 = 1 + x1

q1 = 1 + x0

t0 = q0 ∗ q1
q2 = 1 + x1 + x3 + t0

q3 = 1 + x2

t1 = q2 ∗ q3
q4 = x2

q5 = x2 + x3 + t0

t2 = q4 ∗ q5
q6 = x0 + x1 + x2 + t1 + t2

q7 = x1 + x3 + t0

t3 = q6 ∗ q7
y0 = x3 + t0

y1 = x0 + x2 + x3 + t0 + t1 + t2

y2 = x1 + x3 + t0 + t2

y3 = x3 + t1 + t2 + t3

Theorem 7. The inverse S-box of Joltik has a multiplicative complexity of 4.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 3. For a multiplicative
complexity of 4, the following implementation can be obtained:

q0 = 1 + x0

q1 = 1 + x1

t0 = q0 ∗ q1
q2 = 1 + x0 + x2 + t0

q3 = x1 + x3 + t0

t1 = q2 ∗ q3
q4 = x0 + x3

q5 = x3

t2 = q4 ∗ q5
q6 = x1 + x2 + t2

q7 = x1

t3 = q6 ∗ q7
y0 = x2 + t1 + t2 + t3

y1 = x0 + x2 + t0 + t2

y2 = x3 + t0

y3 = x0 + t1

4.5.6 LAC

Theorem 8. The S-box of LAC has a multiplicative complexity of 4.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 3. For a multiplicative
complexity of 4, the following implementation can be obtained:
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q0 = x0

q1 = x0 + x1

t0 = q0 ∗ q1
q2 = 1 + x1 + x3 + t0

q3 = x0 + x2

t1 = q2 ∗ q3
q4 = 1 + x0 + x1 + x2

q5 = 1 + x3 + t0

t2 = q4 ∗ q5
q6 = 1 + x0

q7 = x1 + t1 + t2

t3 = q6 ∗ q7
y0 = x2 + x3 + t1 + t3

y1 = x0 + t0 + t3

y2 = t1 + t2

y3 = x1 + x2 + x3 + t0

4.5.7 Minalpher

Theorem 9. The S-box of Minalpher has a multiplicative complexity of 5.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 4. For a multiplicative
complexity of 5, the following implementation can be obtained:

q0 = x1 + x2 + x3

q1 = x1

t0 = q0 ∗ q1
q2 = x0 + x1 + x3

q3 = x1 + x2 + t0

t1 = q2 ∗ q3
q4 = x0 + t0

q5 = x0 + x1 + x2 + t0

t2 = q4 ∗ q5
q6 = 1 + x0 + x1 + t1

q7 = 1 + x0 + x1 + x2 + t0 + t2

t3 = q6 ∗ q7
q8 = x0 + x2 + x3 + t0 + t1 + t2 + t3

q9 = x1 + x2 + t0 + t2 + t3

t4 = q8 ∗ q9
y0 = x2 + t4

y1 = x0 + x2 + t1

y2 = t0 + t3

y3 = t1 + t2 + t3

4.5.8 Prøst

Theorem 10. The S-box of Prøst has a multiplicative complexity of 4.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 3. For a multiplicative
complexity of 4, the following implementation can be obtained:

34



q0 = x0

q1 = x1

t0 = q0 ∗ q1
q2 = x0 + x2 + t0

q3 = 1 + x0 + x1 + · · ·
· · ·+ x2 + x3 + t0

t1 = q2 ∗ q3
q4 = x3

q5 = x0 + x2 + x3 + t0

t2 = q4 ∗ q5
q6 = x1 + x3 + t0

q7 = x2 + t0

t3 = q6 ∗ q7
y0 = x2 + t0

y1 = t1 + t2

y2 = x0 + t3

y3 = x1 + t1

4.5.9 RECTANGLE

Theorem 11. The S-box of RECTANGLE has a multiplicative complexity of 4.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 3. For a multiplicative
complexity of 4, the following implementation can be obtained:

q0 = x0 + x1

q1 = x0 + x1 + x3

t0 = q0 ∗ q1
q2 = x3

q3 = 1 + x1

t1 = q2 ∗ q3
q4 = 1 + x0 + x3 + t1

q5 = 1 + x0 + x2 + x3 + t0

t2 = q4 ∗ q5
q6 = x0 + x1 + x2 + t0 + t2

q7 = x1 + t2

t3 = q6 ∗ q7
y0 = x2 + x3 + t0 + t1 + t3

y1 = x2 + t0 + t1

y2 = x0 + x2 + t0

y3 = x0 + x1 + x2 + t0 + t2

Theorem 12. The inverse S-box of RECTANGLE has a multiplicative complexity of 4.

Proof. SAT solvers output UNSAT for a multiplicative complexity of 3. For a multiplicative
complexity of 4, the following implementation can be obtained:

q0 = 1 + x2

q1 = 1 + x0 + x3

t0 = q0 ∗ q1
q2 = x0 + x1 + x3

q3 = 1 + x2 + x3 + t0

t1 = q2 ∗ q3
q4 = x2 + x3 + t0

q5 = x0 + x1 + t0

t2 = q4 ∗ q5
q6 = x1 + x3 + t0

q7 = x1 + t1 + t2

t3 = q6 ∗ q7
y0 = x2 + t1 + t2 + t3

y1 = x0 + x2 + x3 + t1 + t3

y2 = t1 + t2

y3 = x3 + t0 + t1 + t2
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Chapter 5

Choosing Efficient Operations for
Masking

Some high-level operations commonly performed in ciphers are more suitable for a Boolean
masking scheme as opposed to an arithmetic masking scheme. The amount of overhead that
comes with masking differs per operation, as was demonstrated by Messerges in [50]. Implementing
masked versions of all CAESAR candidates is beyond the scope of this thesis, but this chapter
sheds some light on how efficient it could be for certain candidates. In a way very similar to [50]1,
fundamental operations in the core primitives of CAESAR candidates are identified. This means
that for LAC, only LBlock-s is considered, and on an algorithmic level. On an implementation
level, the exact operations that are used also depend on the data structure chosen to store the
cipher state.

5.1 Table Lookups

Table lookups are expensive to mask. For each execution of the algorithm, a Boolean masked
table has to be computed using an input mask and an output mask. The table also has to be
stored somewhere in memory. This storage requirement can become a problem for smartcard
implementations with little memory available. It is typically the S-box that is implemented using
a lookup table. In AES, for instance, the 8x8 S-box takes 256 bytes. It can also be described
arithmetically, but then the implementation will become significantly slower. PRIMATE, Joltik,
LAC, and Minalpher all suggest in their proposals and their reference implementations to
implement the S-box with a lookup table. This costs PRIMATE 32 bytes of storage and 16 bytes
for Joltik, LAC, and Minalpher. The other CAESAR candidates selected in this thesis suggest a
bitsliced implementation for the S-box, which prevents the need of a lookup table, or, in the case
of ICEPOLE, Ketje, and Keyak, provide simple Boolean operations to implement the nonlinear
function.

Lookup tables can be used for operations other than S-boxes as well. iSCREAM and SCREAM
use a lookup table of 512 bytes for the linear layer. ICEPOLE needs 96 bytes for its round
constants, assuming 12 rounds, and Joltik requires another 16 bytes for its subtweakey and 64
bytes for round constants, assuming 32 rounds. For PRIMATE and RECTANGLE, it is assumed

1In [50], linear transformations are discussed separately, but as these are usually implemented with bitwise
Boolean functions and shifts and rotates, they are here omitted as an operation category. All notes on masking
bitwise Boolean functions and shifts and rotates also apply if they are part of a linear transformation.
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that the LFSR that computes the round constants is implemented using XORs and rotates. Ascon,
Ketje, Keyak, Prøst, and RECTANGLE do not need any lookup table. An overview of the
memory requirements per cipher is given in Table 5.1.

It is unlikely that lookup tables of these sizes will raise problems with implementations for
smartcards or other small devices.

5.2 Bitwise Boolean Functions

Bitwise Boolean functions such as AND, OR and XOR are all fast to compute. They can be masked
with a Boolean masking scheme, as explained in Section 2.5.3. For linear operations such as XOR,
the additional cost of masking is linear in the number of operations or gates. The XOR operation
is heavily used by all CAESAR candidates. The costs of masking are quadratic in the number of
inputs for nonlinear operations such as AND and OR.

In the previous chapter, we minimised the number of nonlinear operations in the computation
of the S-box. This is highly useful especially in the context of hardware implementations and
bitsliced software implementations. However, some cipher designers suggested to use lookup
tables to implement their S-boxes. For this overview, we will assume that the implementations
are in line with the suggestions of the designers. In that case, AES, PRIMATE, Joltik, LAC, and
Minalpher do not require nonlinear operations. All their nonlinearity is captured by the S-box
that is implemented as a lookup table.

The core primitives in iSCREAM, SCREAM, Ascon, ICEPOLE, Ketje, Keyak, Prøst, and
RECTANGLE do need AND and/or OR operations. Most of these are part of the implementation
of the S-boxes, although some arithmetic operations also sometimes use an AND or an OR.

5.3 Shifts and Rotates

Fixed shifts and rotates are easy to mask, also using a Boolean masking scheme. The masks
shift and rotate along with the data. To be more precise, if we want to mask a fixed right rotate,
denoted ≫, by n, the masked output becomes x′ ≫ n and the new mask becomes rx ≫ n. This
means that the additional cost is again linear in the number of shifts and rotates. These operations
are used by the majority of the CAESAR candidates that are discussed. Only SCREAM and
Minalpher do not make use of them. For AES-like designs, it is typically the ShiftRows operation
where shifts/rotates are used2. Linear transformations are also frequently implemented using
bitwise Boolean functions and shifts/rotates. Ketje and Keyak use shifts/rotates in the θ operation
as well. In iSCREAM, it is with the computation of the tweakey, while in Ascon it is with the
round constants. LAC uses them in its key schedule.

(Sensitive) data dependent shifts and rotates are a lot less efficient to mask. The shift/rotation
distance now also needs to be masked. For this, an arithmetic masking scheme is more suitable.
This requires some extra effort. However, such data dependent shifts and rotates do not occur in
the previously mentioned authenticated encryption schemes.

5.4 Modular Additions and Multiplications

For modular additions and multiplications, an arithmetic masking scheme is more suitable, as
explained in Section 2.5.3. The cost of masking modular additions then becomes linear in the
number of additions, while the cost of masking modular multiplications is quadratic and should

2A similar operation is called ShiftPlanes in Prøst and ρ in ICEPOLE, Ketje and Keyak.
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therefore be avoided. However, how efficient this is in practice depends more on how well the
modulus aligns with powers of two, or the CPU word size in the case of a software implementation.
Whether switching between different types of masking is necessary is also significant.

iSCREAM and SCREAM use multiplication modulo 256 for their round constants and Joltik
multiplication modulo 16 for its subtweakey, although that parts needs does not need to be
masked. ICEPOLE, Ketje and Keyak use a less CPU-friendly modulus. ICEPOLE needs addition
modulo 4 and 5, while Ketje and Keyak need both addition and multiplication modulo 5, but
only for indexing so it does not have to be masked.

5.5 Modular Polynomial Multiplications

Whether masking modular polynomial multiplications can be done efficiently depends on the
way it is implemented. Lookup table approaches are possible, but usually inefficient. AES,
PRIMATE and Joltik use modular polynomial multiplications over F2[x]/x8 + x4 + x3 + x+ 1,
F2[x]/x5 +x2 +1, and F2[x]/x4 +x+1, respectively. Masking modular polynomial multiplications
is then similar to masking regular modular multiplications.

5.6 Results

The observations above are summarised in Table 5.1. It can be seen that the expected cost of
masking will be within reasonable limits for all discussed candidates. iSCREAM and SCREAM
are most likely to be most expensive to mask, as they use a relatively large lookup table, the
expensive AND/OR operations, and expensive modular multiplications, which also require a switch
from a Boolean to an arithmetic masking scheme that causes additional overhead. Ascon, LAC,
Minalpher, Prøst, and RECTANGLE all stand out when it comes to the expected cost of masking.
They do not need switching to an arithmetic masking scheme and they use only very small lookup
tables or a low amount of AND/OR operations.
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Operation
Table
lookups

Bitwise
Boolean
operations

Shifts
and
rotates

Modular
additions
and multipli-
cations

Modular
polynomial
multipli-
cations

AES 256 bytes XOR Fixed X

iSCREAM 512 bytes AND,OR,XOR Fixed × mod 256

SCREAM 512 bytes AND,OR,XOR × mod 256

Ascon AND,OR,XOR Fixed

ICEPOLE 96 bytes AND,XOR Fixed

Ketje/Keyak AND,XOR Fixed

PRIMATE 25 bytes XOR Fixed X

Joltik 64 bytes XOR Fixed + mod 16 X

LAC 16 bytes XOR Fixed

Minalpher 16 bytes XOR

Prøst AND,XOR Fixed

RECTANGLE AND,OR,XOR Fixed

Table 5.1: Fundamental operations in CAESAR candidates and RECT-
ANGLE.
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Chapter 6

Conclusion

Within the context of the CAESAR candidates, we started out by asking ourselves two questions.
The first was about the use of metrics to assess the intrinsic resistance of ciphers to implementation-
and device-dependent attacks at the design stage. We have discussed the metrics that have
appeared in literature and we compared the metrics that are usable at the design stage. It appears
that the SNR, the modified transparency order, and the confusion coefficient are all consistent in
their predictions of which S-boxes are most resistant to attacks that makes use of side-channels
such as differential power analysis. According to them, the S-boxes of Minalpher, Ascon, and
the inverse S-box of SCREAM are the most SCA-resistant 4-bit, 5-bit, and 8-bit S-boxes in the
CAESAR competition, respectively. The S-boxes of Joltik, Ketje and Keyak, and the inverse
S-box of AES are the least resistant S-boxes, if the metrics are to be believed.

For the confusion coefficient, we have shown in more detail how it behaves in practice. It
nicely propagates to higher-order attacks and it responds to masking schemes as is to be expected.
It becomes clear once again that the chosen power model and selection function are of high
importance.

Although the SNR, modified transparency order, and the confusion coefficient all look very
credible as metrics and behave as they should under various circumstances, CPA simulation
results do not reflect the expectations suggested by the metrics. Even the small differences that
the S-boxes show are in conflict with the metrics.

The second question we asked ourselves was on design strategies to reduce the additional costs
of applying masking countermeasures. The additional costs are linear in the number of linear
gates and quadratic in the number of nonlinear gates. We therefore first attempted to reduce the
number of nonlinear gates in S-box implementations. We calculated the multiplicative complexity
for the S-boxes by encoding them in logic and by feeding the problem to a SAT solver. For most
S-boxes, we were able to obtain an implementation with a provably minimum number of nonlinear
gates. In particular, we provide implementations for the 4-bit S-boxes except Minalpher with
only 4 AND gates, for the S-boxes of Ascon, Ketje, Keyak, and Minalpher with 5 AND gates, and
for ICEPOLE’s S-box with 6 AND gates.

We then zoomed out and looked at the high-level design of the ciphers. We identified the
fundamental operations that are used and looked at the costs of masking them. We also looked at
the memory requirements and at overhead caused by switching between Boolean and arithmetic
masking schemes. It appears that the costs of masking are expected to be the least for Ascon,
LAC, Minalpher, Prøst, and RECTANGLE.

From these results, a general design strategy can be distilled to only use fundamental operations
that are cheap to mask using a Boolean masking scheme, and to minimise the number of required
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nonlinear operations by choosing a secure S-box with a low multiplicative complexity.
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Chapter 7

Future Work

In the process of dealing with the problems as stated in Sections 1.1 and 1.2, more questions
were raised that, despite being interesting, could unfortunately not be answered within the given
amount of time or within the scope of this thesis. They are put here as ideas for future research.

In this work, we have seen that metrics are not always useful to assess the intrinsic resistance
to side-channel attacks of an S-box at the design stage. While the predictions are hard to relate
to simulation results, the metrics are mostly consistent. It is not immediately clear why this is
the case, as they take different approaches. In the case of the transparency order line of work
and the confusion coefficients, it is unknown how they are precisely related. More theoretical
analysis is required to understand the exact nature of this relation. This will lead to a better
insight of which metric is most useful, if any.

Secondly, it is unclear if a 5-bit S-box should be more or less resistant to power analysis
attacks compared to S-boxes of different sizes, or in general, how metric results for differently
sized S-boxes should be interpreted and compared. In Section 3.7, it turned out that the confusion
coefficient behaves oddly with 5-bit S-boxes in a Hamming distance power model. There appears
to be little reason for this, yet 5-bit S-boxes, or S-boxes of other odd sizes, have not nearly
received as much attention from researchers as even sizes.

Thirdly, some work has been done to compare the predictions given by metrics to actual
success rates of actual SCA attacks for certain S-boxes, e.g. in [30]. However, in other cases such
as in our work and in [20], the comparison is performed on artificial simulation data generated
according to a certain leakage function. More research using real data is required to better
understand the use of design-time metrics in practice for general S-boxes.

Furthermore, methods exist to generally minimise the number of operations to perform a
certain function, and methods exist to minimise the number of nonlinear operations. For efficiency
and speed reasons, it would be interesting to know if there exist general strategies to combine
such methods to reach optimal implementations with respect to masking. Additional overhead is
always the argument against implementing a masking scheme, so when this can be minimised
and the overhead in practice becomes small enough, it will lead to more secure implementations.
Our results in Sections 4.4 and 4.5 yield a minimum number of nonlinear gates, but at the cost of
being generous with the number of XOR gates. It would be interesting to learn more about the
best way to further minimise the number of linear operations.

Finally, identifying fundamental operations in cipher constructions and making predictions
about the additional costs of masking, as done in Chapter 5, are only as good as that. To
learn about the actual costs in practice, masked versions of all CAESAR candidates need to be
implemented, as was done in [50]. However, it is more convenient to do so once the number of
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candidates has been drastically reduced in subsequent rounds, to reduce the amount of work.
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[5] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van Assche. The Keccak reference,
January 2011. http://keccak.noekeon.org/.
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differential power analysis. In Çetin K. Koç and Christof Paar, editors, Cryptographic
Hardware and Embedded Systems – CHES 2000, volume 1965 of Lecture Notes in Computer
Science, pages 231–237. Springer Berlin Heidelberg, 2000.

[23] Nicolas Courtois, Daniel Hulme, and Theodosis Mourouzis. Solving circuit optimisation
problems in cryptography and cryptanalysis, 2011. http://eprint.iacr.org/.

[24] Nicolas Courtois, Theodosis Mourouzis, and Daniel Hulme. Exact logic minimization and
multiplicative complexity of concrete algebraic and cryptographic circuits. International
Journal On Advances in Intelligent Systems, 6(3 and 4):165–176, 2013.

[25] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES – The Advanced Encryption
Standard. Information Security and Cryptography. Springer, 2002.

[26] Blandine Debraize. Efficient and provably secure methods for switching from arithmetic
to boolean masking. In Emmanuel Prouff and Patrick Schaumont, editors, Cryptographic
Hardware and Embedded Systems – CHES 2012, volume 7428 of Lecture Notes in Computer
Science, pages 107–121. Springer Berlin Heidelberg, 2012.

45

http://eprint.iacr.org/
http://eprint.iacr.org/


[27] Aidong Adam Ding, Liwei Zhang, Yunsi Fei, and Pei Luo. A statistical model for higher
order DPA on masked devices. In Lejla Batina and Matthew Robshaw, editors, Cryptographic
Hardware and Embedded Systems – CHES 2014, volume 8731 of Lecture Notes in Computer
Science, pages 147–169. Springer Berlin Heidelberg, 2014.

[28] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer. Ascon.
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Schwabe, Tolga Yalçın, and DTU Compute. Prøst v1. CAESAR submission, 2014.
http://competitions.cr.yp.to/round1/proestv11.pdf.

[44] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis. In Michael
Wiener, editor, Advances in Cryptology – CRYPTO 1999, volume 1666 of Lecture Notes in
Computer Science, pages 388–397. Springer Berlin Heidelberg, 1999.

[45] Paul C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other
systems. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO 1996, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer Berlin Heidelberg, 1996.

[46] Gregor Leander and Axel Y. Poschmann. On the classification of 4 bit S-boxes. In Claude
Carlet and Berk Sunar, editors, Arithmetic of Finite Fields, volume 4547 of Lecture Notes in
Computer Science, pages 159–176. Springer Berlin Heidelberg, 2007.

[47] Stefan Mangard. Hardware countermeasures against DPA – a statistical analysis of their
effectiveness. In Tatsuaki Okamoto, editor, Topics in Cryptology – CT-RSA 2004, volume
2964 of Lecture Notes in Computer Science, pages 222–235. Springer Berlin Heidelberg, 2004.

[48] Mitsuru Matsui. Linear cryptanalysis method for DES cipher. In Tor Helleseth, editor,
Advances in Cryptology – EUROCRYPT 1993, volume 765 of Lecture Notes in Computer
Science, pages 386–397. Springer Berlin Heidelberg, 1994.

[49] Thomas S. Messerges. Using second-order power analysis to attack DPA resistant software.
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Appendix A

Confusion Coefficient Results

A.1 Original Data

S-box

First-order,
no mask
(µ;σ2)

First-order,
LEMS
(µ;σ2)

Second-order,
LEMS
(µ;σ2)

Second-order,
1 full mask
(µ;σ2)

AES (4.016; 0.112) (0.000; 0.000) (1.004; 0.007) (1.004; 0.007)

AES−1 (4.016; 0.081) (0.000; 0.000) (1.004; 0.005) (1.004; 0.005)

iSCREAM (4.016; 0.151) (0.000; 0.000) (1.004; 0.009) (1.004; 0.009)

SCREAM (4.016; 0.194) (0.000; 0.000) (1.004; 0.012) (1.004; 0.012)

SCREAM−1 (4.016; 0.288) (0.000; 0.000) (1.004; 0.018) (1.004; 0.018)

Ascon (2.581; 0.518) (0.000; 0.000) (0.645; 0.032) (0.645; 0.032)

ICEPOLE (2.581; 0.196) (0.000; 0.000) (0.645; 0.012) (0.645; 0.012)

Ketje/Keyak (2.581; 0.118) (0.000; 0.000) (0.645; 0.007) (0.645; 0.007)

PRIMATE (2.581; 0.318) (0.000; 0.000) (0.645; 0.020) (0.645; 0.020)

PRIMATE−1 (2.581; 0.318) (0.000; 0.000) (0.645; 0.020) (0.645; 0.020)

Joltik (2.133; 0.168) (0.000; 0.000) (0.533; 0.011) (0.533; 0.011)

Joltik−1 (2.133; 0.329) (0.000; 0.000) (0.533; 0.021) (0.533; 0.021)

LAC (2.133; 0.222) (0.000; 0.000) (0.533; 0.014) (0.533; 0.014)

Minalpher (2.133; 0.704) (0.000; 0.000) (0.533; 0.044) (0.533; 0.044)

Prøst (2.133; 0.329) (0.000; 0.000) (0.533; 0.021) (0.533; 0.021)

RECTANGLE (2.133; 0.383) (0.000; 0.000) (0.533; 0.024) (0.533; 0.024)

RECTANGLE−1 (2.133; 0.651) (0.000; 0.000) (0.533; 0.041) (0.533; 0.041)

Table A.1: Confusion coefficient properties using the Hamming weight
model.
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S-box

First-order,
no mask
(µ;σ2)

First-order,
LEMS
(µ;σ2)

Second-order,
LEMS
(µ;σ2)

Second-order,
1 full mask
(µ;σ2)

AES (4.086; 0.089) (0.000; 0.000) (1.004; 0.007) (1.004; 0.007)

AES−1 (4.086; 0.077) (0.000; 0.000) (1.004; 0.005) (1.004; 0.005)

iSCREAM (4.580; 0.249) (0.000; 0.000) (1.004; 0.009) (1.004; 0.009)

SCREAM (3.702; 0.128) (0.000; 0.000) (1.004; 0.012) (1.004; 0.012)

SCREAM−1 (3.702; 0.127) (0.000; 0.000) (1.004; 0.018) (1.004; 0.018)

Ascon (2.581; 0.585) (0.000; 0.000) (0.645; 0.032) (0.645; 0.032)

ICEPOLE (3.226; 1.044) (0.000; 0.000) (0.645; 0.012) (0.645; 0.012)

Ketje/Keyak (3.226; 1.914) (0.000; 0.000) (0.645; 0.007) (0.645; 0.007)

PRIMATE (2.323; 0.292) (0.000; 0.000) (0.645; 0.020) (0.645; 0.020)

PRIMATE−1 (2.323; 0.274) (0.000; 0.000) (0.645; 0.020) (0.645; 0.020)

Joltik (1.733; 0.218) (0.000; 0.000) (0.533; 0.011) (0.533; 0.011)

Joltik−1 (1.733; 0.210) (0.000; 0.000) (0.533; 0.021) (0.533; 0.021)

LAC (1.733; 0.156) (0.000; 0.000) (0.533; 0.014) (0.533; 0.014)

Minalpher (1.867; 0.543) (0.000; 0.000) (0.533; 0.044) (0.533; 0.044)

Prøst (2.533; 0.472) (0.000; 0.000) (0.533; 0.021) (0.533; 0.021)

RECTANGLE (1.600; 0.329) (0.000; 0.000) (0.533; 0.024) (0.533; 0.024)

RECTANGLE−1 (1.600; 0.293) (0.000; 0.000) (0.533; 0.041) (0.533; 0.041)

Table A.2: Confusion coefficient properties using the Hamming distance
model.

S-box

First-order,
no mask
(µ;σ2)

First-order,
LEMS
(µ;σ2)

Second-order,
LEMS
(µ;σ2)

Second-order,
1 full mask
(µ;σ2)

AES (10965; 684557) (0.00; 0.00) (3.59×107; 5.93×1012) (3.59×107; 5.93×1012)

AES−1 (10965; 605787) (0.00; 0.00) (3.59×107; 5.63×1012) (3.59×107; 5.63×1012)

iSCREAM (10965; 2092633) (0.00; 0.00) (3.59×107; 3.12×1013) (3.59×107; 3.12×1013)

SCREAM (10965; 4383174) (0.00; 0.00) (3.59×107; 6.76×1013) (3.59×107; 6.76×1013)

SCREAM−1 (10965; 4643440) (0.00; 0.00) (3.59×107; 3.42×1013) (3.59×107; 3.42×1013)

Ascon (176; 3724) (0.00; 0.00) (9020; 1.53×107) (9020; 1.53×107)

ICEPOLE (176; 1957) (0.00; 0.00) (9020; 8.70×106) (9020; 8.70×106)

Ketje/Keyak (176; 3660) (0.00; 0.00) (9020; 1.53×107) (9020; 1.53×107)

PRIMATE (176; 1245) (0.00; 0.00) (9020; 2.73×106) (9020; 2.73×106)

PRIMATE−1 (176; 1550) (0.00; 0.00) (9020; 2.89×106) (9020; 2.89×106)

Joltik (45.33; 205.9) (0.00; 0.00) (582.53; 52921) (582.53; 52921)

Joltik−1 (45.33; 138.0) (0.00; 0.00) (582.53; 27799) (582.53; 27799)

LAC (45.33; 167.6) (0.00; 0.00) (582.53; 34201) (582.53; 34201)

Minalpher (45.33; 109.1) (0.00; 0.00) (582.53; 22257) (582.53; 22257)

Prøst (45.33; 211.6) (0.00; 0.00) (582.53; 52944) (582.53; 52944)

RECTANGLE (45.33; 175.3) (0.00; 0.00) (582.53; 31071) (582.53; 31071)

RECTANGLE−1 (45.33; 202.7) (0.00; 0.00) (582.53; 25263) (582.53; 25263)

Table A.3: Confusion coefficient properties using the value model, as
defined in Section 3.7.1.
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S-box

First-order,
no mask
(µ;σ2)

First-order,
LEMS
(µ;σ2)

Second-order,
LEMS
(µ;σ2)

Second-order,
1 full mask
(µ;σ2)

AES (4.176; 0.125) (4.446×10−31; 1.334×10−63) (1.246; 0.011) (1.246; 0.011)

AES−1 (4.176; 0.092) (4.446×10−31; 1.460×10−63) (1.246; 0.009) (1.246; 0.009)

iSCREAM (4.176; 0.165) (4.446×10−31; 1.514×10−63) (1.246; 0.015) (1.246; 0.015)

SCREAM (4.176; 0.231) (4.446×10−31; 1.456×10−63) (1.246; 0.023) (1.246; 0.023)

SCREAM−1 (4.176; 0.247) (4.446×10−31; 1.404×10−63) (1.246; 0.019) (1.246; 0.019)

Ascon (2.663; 0.641) (5.368×10−32; 1.372×10−64) (0.770; 0.059) (0.770; 0.059)

ICEPOLE (2.663; 0.217) (5.368×10−32; 1.372×10−64) (0.770; 0.020) (0.770; 0.020)

Ketje/Keyak (2.663; 0.169) (5.368×10−32; 1.372×10−64) (0.770; 0.022) (0.770; 0.022)

PRIMATE (2.663; 0.283) (5.368×10−32; 2.588×10−64) (0.770; 0.020) (0.770; 0.020)

PRIMATE−1 (2.663; 0.342) (5.368×10−32; 1.372×10−64) (0.770; 0.029) (0.770; 0.029)

Joltik (2.219; 0.142) (4.602×10−32; 1.621×10−64) (0.662; 0.011) (0.662; 0.011)

Joltik−1 (2.219; 0.404) (4.602×10−32; 1.621×10−64) (0.662; 0.043) (0.662; 0.043)

LAC (2.219; 0.250) (4.602×10−32; 1.621×10−64) (0.662; 0.024) (0.662; 0.024)

Minalpher (2.219; 0.818) (4.602×10−32; 1.621×10−64) (0.662; 0.067) (0.662; 0.067)

Prøst (2.219; 0.377) (4.602×10−32; 1.621×10−64) (0.662; 0.035) (0.662; 0.035)

RECTANGLE (2.219; 0.381) (4.602×10−32; 1.621×10−64) (0.662; 0.033) (0.662; 0.033)

RECTANGLE−1 (2.219; 0.645) (4.602×10−32; 1.621×10−64) (0.662; 0.060) (0.662; 0.060)

Table A.4: Confusion coefficient properties using the weighted model,
as defined in Section 3.7.1.

S-box

First-order,
no mask
(µ;σ2)

First-order,
LEMS
(µ;σ2)

Second-order,
LEMS
(µ;σ2)

Second-order,
1 full mask
(µ;σ2)

AES (52.706; 18.760) (0.000; 0.000) (149.159; 159.439) (150.871; 158.191)

AES−1 (52.706; 13.705) (0.000; 0.000) (149.159; 113.001) (150.871; 114.985)

iSCREAM (52.706; 26.498) (0.000; 0.000) (149.159; 187.999) (150.871; 212.469)

SCREAM (52.706; 29.550) (0.000; 0.000) (149.159; 280.230) (150.871; 276.535)

SCREAM−1 (52.706; 51.785) (0.000; 0.000) (149.159; 329.428) (150.871; 400.291)

Ascon (11.613; 8.705) (0.000; 0.000) (5.645; 2.417) (10.403; 8.549)

ICEPOLE (11.613; 4.239) (0.000; 0.000) (5.645; 1.294) (10.403; 3.231)

Ketje/Keyak (11.613; 2.364) (0.000; 0.000) (5.645; 0.671) (10.403; 1.917)

PRIMATE (11.613; 9.126) (0.000; 0.000) (5.645; 1.442) (10.403; 4.531)

PRIMATE−1 (11.613; 5.545) (0.000; 0.000) (5.645; 1.024) (10.403; 5.242)

Joltik (5.600; 1.891) (0.000; 0.000) (1.700; 0.118) (2.750; 0.256)

Joltik−1 (5.600; 1.570) (0.000; 0.000) (1.700; 0.238) (2.750; 0.657)

LAC (5.600; 1.623) (0.000; 0.000) (1.700; 0.136) (2.750; 0.363)

Minalpher (5.600; 3.070) (0.000; 0.000) (1.700; 0.291) (2.750; 1.160)

Prøst (5.600; 3.338) (0.000; 0.000) (1.700; 0.207) (2.750; 0.450)

RECTANGLE (5.600; 3.338) (0.000; 0.000) (1.700; 0.375) (2.750; 0.660)

RECTANGLE−1 (5.600; 3.659) (0.000; 0.000) (1.700; 0.189) (2.750; 0.992)

Table A.5: Confusion coefficient properties using the pairs model, as
defined in Section 3.7.1.
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A.2 Normalised Data

The tables in this section show the coefficient of variation cv = σ
µ for the various distributions.

By calculating this, S-boxes of different sizes can be compared.

S-box
First-order,
no mask

First-order,
LEMS

Second-order,
LEMS

Second-order,
1 full mask

AES 0.083 N/A 0.083 0.083

AES−1 0.071 N/A 0.071 0.071

iSCREAM 0.097 N/A 0.097 0.097

SCREAM 0.110 N/A 0.110 0.110

SCREAM−1 0.134 N/A 0.134 0.134

Ascon 0.279 N/A 0.279 0.279

ICEPOLE 0.172 N/A 0.172 0.172

Ketje/Keyak 0.133 N/A 0.133 0.133

PRIMATE 0.219 N/A 0.219 0.219

PRIMATE−1 0.219 N/A 0.219 0.219

Joltik 0.192 N/A 0.192 0.192

Joltik−1 0.269 N/A 0.269 0.269

LAC 0.221 N/A 0.221 0.221

Minalpher 0.393 N/A 0.393 0.393

Prøst 0.269 N/A 0.269 0.269

RECTANGLE 0.290 N/A 0.290 0.290

RECTANGLE−1 0.378 N/A 0.378 0.378

Table A.6: cv of the confusion coefficients using the Hamming weight
model.
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S-box
First-order,
no mask

First-order,
LEMS

Second-order,
LEMS

Second-order,
1 full mask

AES 0.073 N/A 0.083 0.083

AES−1 0.068 N/A 0.071 0.071

iSCREAM 0.109 N/A 0.097 0.097

SCREAM 0.097 N/A 0.110 0.110

SCREAM−1 0.096 N/A 0.134 0.134

Ascon 0.296 N/A 0.179 0.179

ICEPOLE 0.317 N/A 0.110 0.110

Ketje/Keyak 0.429 N/A 0.086 0.086

PRIMATE 0.233 N/A 0.140 0.140

PRIMATE−1 0.225 N/A 0.140 0.140

Joltik 0.270 N/A 0.192 0.192

Joltik−1 0.264 N/A 0.269 0.269

LAC 0.228 N/A 0.221 0.221

Minalpher 0.395 N/A 0.393 0.393

Prøst 0.271 N/A 0.269 0.269

RECTANGLE 0.358 N/A 0.290 0.290

RECTANGLE−1 0.338 N/A 0.378 0.378

Table A.7: cv of the confusion coefficients using the Hamming distance
model.

S-box
First-order,
no mask

First-order,
LEMS

Second-order,
LEMS

Second-order,
1 full mask

AES 0.075 N/A 0.068 0.068

AES−1 0.071 N/A 0.066 0.066

iSCREAM 0.132 N/A 0.155 0.155

SCREAM 0.191 N/A 0.229 0.229

SCREAM−1 0.197 N/A 0.163 0.163

Ascon 0.347 N/A 0.434 0.434

ICEPOLE 0.251 N/A 0.327 0.327

Ketje/Keyak 0.344 N/A 0.434 0.434

PRIMATE 0.200 N/A 0.183 0.183

PRIMATE−1 0.224 N/A 0.188 0.188

Joltik 0.317 N/A 0.395 0.395

Joltik−1 0.259 N/A 0.286 0.286

LAC 0.286 N/A 0.317 0.317

Minalpher 0.230 N/A 0.256 0.256

Prøst 0.321 N/A 0.395 0.395

RECTANGLE 0.292 N/A 0.303 0.303

RECTANGLE−1 0.314 N/A 0.273 0.273

Table A.8: cv of the confusion coefficients using the value model.
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S-box
First-order,
no mask

First-order,
LEMS

Second-order,
LEMS

Second-order,
1 full mask

AES 0.085 0.082 0.084 0.084

AES−1 0.072 0.086 0.074 0.074

iSCREAM 0.097 0.087 0.098 0.098

SCREAM 0.115 0.086 0.121 0.121

SCREAM−1 0.119 0.084 0.110 0.110

Ascon 0.301 0.218 0.315 0.315

ICEPOLE 0.175 0.218 0.182 0.182

Ketje/Keyak 0.154 0.218 0.194 0.194

PRIMATE 0.200 0.300 0.182 0.182

PRIMATE−1 0.220 0.218 0.222 0.222

Joltik 0.170 0.277 0.159 0.159

Joltik−1 0.287 0.277 0.312 0.312

LAC 0.225 0.277 0.233 0.233

Minalpher 0.408 0.277 0.392 0.392

Prøst 0.277 0.277 0.282 0.282

RECTANGLE 0.278 0.277 0.275 0.275

RECTANGLE−1 0.362 0.277 0.369 0.369

Table A.9: cv of the confusion coefficients using the weighted model.

S-box
First-order,
no mask

First-order,
LEMS

Second-order,
LEMS

Second-order,
1 full mask

AES 0.082 N/A 0.085 0.083

AES−1 0.070 N/A 0.071 0.071

iSCREAM 0.098 N/A 0.092 0.097

SCREAM 0.103 N/A 0.112 0.110

SCREAM−1 0.137 N/A 0.122 0.133

Ascon 0.254 N/A 0.275 0.019

ICEPOLE 0.177 N/A 0.202 0.173

Ketje/Keyak 0.132 N/A 0.145 0.133

PRIMATE 0.260 N/A 0.213 0.205

PRIMATE−1 0.203 N/A 0.179 0.220

Joltik 0.246 N/A 0.202 0.184

Joltik−1 0.224 N/A 0.287 0.295

LAC 0.228 N/A 0.217 0.219

Minalpher 0.313 N/A 0.317 0.392

Prøst 0.326 N/A 0.268 0.244

RECTANGLE 0.326 N/A 0.360 0.295

RECTANGLE−1 0.342 N/A 0.256 0.362

Table A.10: cv of the confusion coefficients using the pairs model.
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