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Abstract. Proper instruction scheduling, register allocation, and spill
code generation can have a large impact on the efficiency of software, espe-
cially on architectures where loading from memory is relatively expensive.
We find that popular compilers do not suit our needs when optimizing
crypto implementations and develop an ad-hoc scheduler and allocator
specifically targeting the ARM Cortex-M3 and Cortex-M4 platforms.
We successfully apply our tool to speed up a highly optimized bitsliced
assembly implementation of AES.
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1 Introduction

The ARM Cortex-M is a family of 32-bit processors by ARM meant for use in
embedded microcontrollers. They are designed to be cheap and to be energy
efficient, while still being powerful enough to offer adequate performance in
applications such as automotive systems, medical instruments, the Internet of
Things, or other consumer products. As of 2015, over 10 billion of these processors
have been shipped [12].

The Cortex-M3 was announced in 2004, while the Cortex-M4 is a more recent
successor from 2010. Both microprocessors support the ARMv7-M architecture
and the Thumb-2 technology, but the Cortex-M4 supports additional instructions
for digital signal processing, i.e., the ARMv7E-M architecture.

Bitwise and arithmetic instructions take one cycle on these architectures,
except for divisions or writes to the program counter. Branches, loads, and stores
may take more cycles, which is why they can easily bottleneck the performance.
To be more precise, str instructions that store a single word generally only take
one cycles because of the availability of a write buffer, but ldr instructions loading
a single word generally take at least two cycles. However, n ldr instructions
can be pipelined together to be executed in n + 1 cycles if there are no address
dependencies and the program counter remains untouched. An instruction such
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as ldm pipelines all of its loads together, but when it is followed by an ldr, those
will not be pipelined together. For efficient implementations, as many loads as
possible should be pipelined.

When writing highly optimized software for the Cortex-M3 and Cortex-M4
that does not fit in the 14 usable 32-bit registers, it is therefore especially
important to properly take care of instruction scheduling and register allocation.
In Section 2, we first provide a background on compiler optimization research over
the past decades. Afterwards, in Section 3, approaches on instruction scheduling
and register allocation by popular state-of-the-art crosscompilers are reviewed.
We then introduce our ad-hoc instruction scheduler and register allocator in
Section 4 and apply this to the bitsliced AES S-box in Section 5. Our tool was
first mentioned in [14], but this paper describes its inner workings in more detail.
Furthermore, we now compare our tool to recent popular compilers and show
that it is more suitable to minimize overhead caused by spilling.

2 Instruction scheduling and register allocation

When compiling software, two tasks that an optimizing compiler needs to perform
are instruction scheduling and register allocation, including spill code generation.
Initially, in the early eighties, these problems were approached separately. The
instruction scheduling problem is informally defined as follows: given a program as
a list of CPU instructions, find the best way to reorder the instructions, without
changing the semantics of the program, such that the number of pipeline stalls is
minimized. The register allocation problem also acts on a program as a list of
CPU instructions, but now the goal is to assign physical registers to variables
in such a way that the overhead caused by spilling is minimized, where spilling
is the act of pushing variables to and later popping variables from the stack,
because all physical registers are already in use.

The two problems are related, however. When scheduling instructions in a
different way, register allocation might be easier or harder and may require less
or more spilling overhead. It has been shown [4] that compilers that perform the
tasks separately yield poor results on RISC processors. One good alternative is
to still perform instruction scheduling first and register allocation second, but to
schedule using a heuristic that matches the allocation constraints. The two can
be combined even more, but that does not necessarily further improve results
and could even decrease the performance for reasons discussed in [4].

This section discusses two lines of solutions to the register allocation problem.
For a more thorough survey on instruction scheduling and register allocation, the
reader is referred to [11].

Graph coloring. Initial solutions to the register allocation problem were based
on graph coloring, like the algorithm suggested by Chaitin et al. [6,7]. The register
allocation algorithm does not act on C or assembly code directly, but on some
intermediate representation that is in static single assignment (SSA) form. In SSA
form, each variable is defined once and then stays constant, so when the value of
a variable in C changes, it gets assigned to a new variable in SSA. This makes
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optimization easier for compilers, as data flow analysis and liveness analysis are
now much more straightforward.

From the program in SSA form, a register interference graph is built, where
each node represents a variable. The graph is represented both as a bit matrix
and as adjacency vector. Building the graph takes two passes over the data.
Then, unnecessary register copy operations are attempted to be eliminated by
coalescing nodes. This step is also known as subsumption. The interference graph
is rebuilt a few times during this step. Afterwards, it is checked if there exists an
n-coloring for the graph where n is the number of physical registers of the CPU.
It suffices to look if there exists a node with degree ≥ n. If this does not exist,
then we are done and the coloring directly gives an optimal register allocation. If
it does exist, spill code needs to be inserted in the intermediate representation,
after which the interference graph is rebuilt yet again.

Several improvements to this algorithm have been proposed. Briggs et al.
describe [5] a better heuristic to find an n-coloring for the interference graph and
introduce a rematerialization technique to lower the cost of spilling. This was
further improved by live range splitting in [8].

Linear scan. While all improvements to the Chaitin-Briggs style algorithm have
lead to well-performing register allocators in compilers, it still requires several
passes over the data and slows down the compilation process. It is therefore not
suitable for applications like just-in-time compilers, where the compilation time
is a tighter constraint. To solve this problem, Poletto and Sarkar suggested [13]
a linear scan algorithm that is considerably faster, while still achieving results
that are not far behind the graph coloring approach.

First, one pass through the program in intermediate representation is per-
formed to build live intervals or live ranges for all variables. The live interval
specifies from when to when a variable is in use. There is interference between
two variables when their live intervals overlap. The allocation algorithm then
performs one linear scan through this set of live intervals, sorted in order of
increasing start point. During this scan, a list of allocated active live intervals
is maintained. At each point, any expired intervals are removed from the list
and the new interval gets allocated. If the size of the list matches the number of
physical registers and there were no expiring intervals, the variable with the live
interval that ends the furthest away is selected to be spilled. The list is always
kept sorted by increasing end point, to speed this up.

Code generated with the linear scan algorithm has been shown to run only
approximately 10% slower compared to graph coloring-based approaches.

3 Modern approaches

In this section we look at what methods for instruction scheduling and register
allocation are actually used by popular crosscompilers targeting the ARM Cortex-
M3 and Cortex-M4 platforms. We discuss recent stable releases of three well-
known compilers: GCC 6.2, LLVM-based Clang 3.8.1, and ARM Compiler 5.06.
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3.1 GCC

GCC [1] performs instruction scheduling separately. First, a step called modulo
scheduling is executed in which instructions in innermost loops are reordered by
overlapping multiple iterations of the loop. Then the actual instruction scheduling
takes place. It tries to separate the definition and use of variables that could cause
pipeline stalls. Instruction scheduling is performed twice. Once before register
allocation and once again after.

There are actually two register allocators in GCC, the integrated register
allocator (IRA) and the local register allocator (LRA). The IRA runs first. It
is a region-based Chaitin-Briggs-style graph coloring register allocator where
regions are chosen based on register pressure, although the user can change
some settings here. The register allocation is then performed for all regions,
where node coalescing and live range splitting are done during graph coloring.
The IRA only assigns pseudo-registers. The next step is the LRA. The LRA
actually replaces pseudo-registers by physical registers and assigns stack slots.
Furthermore, memory-to-memory moves are coalesced.

3.2 Clang

Clang is the C front-end for the LLVM compiler framework. LLVM also has
multiple register allocators [2], but they are not based on graph coloring. Until
LLVM version 3.0, there used to be one linear scan allocator. One design goal was
to support changes in machine code while the algorithm is running, which does
not work well with graph coloring-based approaches, where it is assumed that
the live ranges are constant. A number of small tweaks have been added to the
original linear scan algorithm to further improve the generated code. However,
all the tweaks also made the code hard to maintain.

In version 3.0, the original linear scan allocator was dropped and two new
register allocators were introduced: a basic and a greedy one. The basic allocator
is loosely based on the linear scan approach, but it uses a priority queue based
on spill weights to determine which live range to visit next, instead of visiting
them in linear order. The list of active live ranges was replaced by a set of live
interval unions, implemented as a tree per physical register. However, the basic
allocator is mostly intended for testing.

The greedy allocator is a heavily tweaked version of the basic allocator. Large
live ranges are allocated first to avoid the problem that all tiny ranges get
allocated and cause larger live ranges to be spilled. A live range can be split into
smaller pieces that are put back in the priority queue when it is unable to find an
interfering live range. This is useful for large live ranges that are actually idle for
most of the time but used intensively for a small section, as the smaller piece of
live range has now a higher change of getting a register allocated for this section.
The algorithm is kept as flexible as possible, which also makes it possible to prefer
certain registers. On ARM, for example, Thumb-2 creates the possibility to have
a 16-bit encoding for an instruction instead of a 32-bit encoding, but this only
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works when the operands are in register r0 until r7. It is therefore convenient
when the register allocator can accommodate such target-specific preferences.

Furthermore, a partitioned Boolean quadratic programming (PBQP) allo-
cator has been available in LLVM for a long time and while its performance is
almost competitive with the greedy allocator, its details will be omitted here. A
comparison of register allocators in LLVM can be found in [16].

3.3 ARM Compiler

ARM has also developed its own compiler targeting its various platforms. The
commercial compiler used to be fully closed-source, but since ARM Compiler 6
was released in 2014, it is based on Clang and LLVM. The instruction scheduling
and register allocation algorithms are therefore highly similar, if not exactly the
same. This is why we use version 5.06 update 3, the most recent version in the
5.x series, released in June 2016, for our comparison in Section 5.

Because it is closed-source, not much is known about its approach regarding
instruction scheduling and register allocation. It is also hard to learn details by
looking at its output alone.

4 Our ARM-specific scheduler and allocator

There are some reasons why compilers are not very suitable for our use case.
Compilers aim to produce fast and small binaries on average, but do not necessarily
generate the most efficient code for a specific input. Furthermore, compilers are
designed to run reasonably fast on large codebases, although when programming
in assembly and in cases where data no longer fits in registers, a scheduler does
not need to be very efficient. It is fine to do multiple attempts and to use only the
best result. Additionally, compilers are large complex pieces of software, where it
is hard to make small tweaks or to insert a different allocation algorithm. Another
tool that appears to fit our needs is qhasm. However, while it is helpful in some
aspects, all instruction scheduling and spill code generation still needs to be done
manually.

To fill the gap, we develop an instruction scheduler and register allocator with
spill code generation that specifically targets ARM Cortex-M3 and Cortex-M4.
This allows us to focus on ARM’s three-operand instructions. We aim to minimize
the number of loads and stores and the usage of the stack. Only few instructions
are currently supported, but it is designed in such a way that it is easy to tweak
and to add more features. Multiple strategies for instruction scheduling and
register allocation are implemented, and a user can play around with them until
he is satisfied with the result.

We first reschedule instructions to reduce the size of the active data set,
by pushing instructions down based on their left-hand side and by pushing
instructions up based on their right-hand side, of course without changing the
semantics of the program. This aims to decrease the length of the live intervals,
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which should make the register allocation easier. Experiments suggest that this
is indeed the case.

Then we allocate registers in a greedy fashion, where we insert loads and
stores when necessary and try to leave the final output in registers. When a
register needs to be freed, it is first checked whether one of the registers contains
a variable that is no longer necessary. Then that register is chosen. If this is not
the case and a variable needs to be spilled, the variable with the longest distance
until reuse is chosen. Whenever a variable is loaded that could also have been
recomputed in one cycle from the current register contents, a warning is shown,
as recomputation is then cheaper than a load that can not be pipelined.

A few other metrics and strategies are implemented, but in our case of the
AES S-box they did not lead to better results. Our tool is nondeterministic
because of hash randomization in Python, so we try several scheduling strategies
multiple times and only use the best result. In practice, less than 10 runs are
sufficient to find the best result for a given set of parameters. One run takes
about 200 milliseconds on a 455-line input on an average laptop using Python
3.5.2. The tool is put in the public domain and its source code is available at
https://github.com/Ko-/aes-armcortexm.

One limitation is that the tool currently does not convert between ldm

instructions and multiple ldr instructions, so pipelining loads may still require
some manual work. Furthermore, only the required instructions for our case study
are supported at the moment, although it is straightforward to add more.

5 Case study: AES S-box

Optimized AES software implementations have been written for a plethora of
computer architectures. Recently, new speed records were set on the ARM Cortex-
M3 and M4 [14]. In this section we show how our scheduler and allocator helped
to achieve these results by focusing on the S-box of AES.

The S-box of AES consists of an inversion in GF (28) followed by an affine
transformation. It can be expensive to compute the inversion, which is why it was
suggested [9] to use a look-up table for the S-box. However, that leads to cache
timing attacks, so it should be avoided in secure constant-time implementations.
Bitslicing is a common strategy for constant-time implementations and especially
when the available registers are large, multiple blocks can be processed in parallel
to reach very high throughputs [10].

Bitsliced S-box. For the fastest bitsliced implementation of the AES S-box, we
can use results from hardware design and look at the smallest circuits in terms
of number of gates. Boyar and Peralta published a circuit with 115 gates [3],
which was later improved to 113: 32 AND gates, 77 XOR gates, and 4 XNOR gates.
This is the smallest known implementation, which is why it is used as a basis
for the software implementation. However, with only 14 available registers, it is
impossible to implement it directly in 113 instructions. Some overhead is needed
to deal with storing values on the stack or with recomputation of values. To
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minimize this overhead, careful instruction scheduling and register allocation is
required.

Table 1 compares the results of GCC, Clang, ARM Compiler, and our own tool,
measuring the number of additional load and store instructions that are inserted.
The compilers also insert additional XOR instructions, but we omit them for the
moment. Our tool does manage to keep the original 113 arithmetic instructions
intact. We notice that compilers perform relatively bad on this specific input.
Variables tend to have large live ranges and there are a lot of dependencies
between instructions. Aggressive instruction rescheduling is required, and that is
where our tool benefits heavily. It can also try several runs and only keep the
best result. It is unknown whether this result is really optimal, though.

For all compilers, we used the compiler flags that resulted in the most efficient
code. This turned out to be -O3 for GCC, -Ofast for Clang, and -O3 -Otime

for the ARM Compiler.

Table 1. Overhead on the 113-instruction bitsliced S-box.

Compilers GCC Clang ARM Compiler Our tool

Loads 46 32 50 16

Stores 27 27 32 16

Masked bitsliced S-box. As microprocessors are typical targets for side-channel
attacks, [14] covers another implementation that aims to protect against first-
order attacks. Boolean masking is applied. The AND gate is masked using the
Trichina-gate [15], which provably does not leak for first-order attacks. Given
random values ra, rb, r and some masked ā = a ⊕ ra and b̄ = b ⊕ rb, a masked
AND operation can be computed as follows:

(a · b) ⊕ r = ((ā · b̄) ⊕ ((ra · b̄) ⊕ ((ra · rb) ⊕ r))) ⊕ (rb · ā).

However, the security proof requires the operations to be performed in the
right order. This can be enforced in the SSA form. Additionally, a load of fresh
randomness, r, is necessary per AND gate. This means that the theoretical best
result consists of 454 instructions: 294 XORs, 128 ANDs and 32 loads. However,
much more spilling is required this time, so the overhead will be much larger.

A comparison can be seen in Table 2. These numbers exclude the 32 loads for
the randomness. Again, we see that an ad-hoc instruction scheduler and register
allocator can greatly outperform common compilers.

6 Conclusion

When writing optimized software in assembly on platforms where the data
sometimes no longer fits into registers, such as the ARM Cortex-M3 and M4,
a custom instruction scheduling and register allocation tool can yield much
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Table 2. Overhead on the 454-instruction masked bitsliced S-box.

Compilers GCC Clang ARM Compiler Our tool

Loads 330 185 332 135

Stores 126 145 132 99

more efficient code than leaving the job to popular compilers. We have shown
that our tool outperforms GCC, Clang, and the ARM Compiler when it comes
to scheduling and spill code generation for an unmasked and masked bitsliced
implementation of the AES S-box.
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