
Optimizations in Symmetric Cryptography

Ko Stoffelen

Copyright © Ko Stoffelen, 2022

ISBN 978-94-6421-722-3

Cover design by Marilou Maes, Persoonlĳk Proefschrift
Printed by GVO Drukkers en Vormgevers

Where applicable, this work is licensed under the Creative
Commons Attribution-NonCommercial-ShareAlike 4.0 In-
ternational license. To view a copy of this license,
visit https://creativecommons.org/licenses/by-nc-
sa/4.0/legalcode.

www.persoonlijkproefschrift.nl
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode

Optimizations in Symmetric Cryptography

Proefschrift

ter verkrĳging van de graad van doctor
aan de Radboud Universiteit Nĳmegen

op gezag van de rector magnificus prof. dr. J.H.J.M. van Krieken,
volgens besluit van het college voor promoties

in het openbaar te verdedigen op

woensdag 1 juni 2022
om 12:30 uur precies

door

Koos Wim Stoffelen

geboren op 7 april 1992
te Groningen

Promotoren

prof. dr. Joan Daemen

prof. dr. Peter Schwabe

Manuscriptcommissie

prof. dr. Bart Jacobs

prof. dr. Anne Canteaut
Inria, Frankrĳk

prof. dr. ir. Vincent Rĳmen
KU Leuven, België

dr. ir. Marc Stevens
Centrum Wiskunde & Informatica, Amsterdam

dr. Gilles Van Assche
STMicroelectronics, België

Acknowledgements

This journey would not have been possible without all the great people who
came along the way. First of all, I express my thanks to Peter Schwabe, my
supervisor. I recall a certain dinner at an Indian restaurant, after the Operating
Systems Security course, where I first learned about post-quantum cryptography
and the possibility of doing a PhD with you. Neither of us would then have
thought that there would be so few mentions of post-quantum cryptography in
this thesis. Thanks for always being so approachable and for providing guidance
whenever asked, even if it required me to go through the Chicago Manual of
Style again.

I also thank the manuscript committee consisting of Bart Jacobs, Anne
Canteaut, Vincent Rĳmen, Marc Stevens, and Gilles Van Assche, for taking the
time to go through my thesis.

Most of the work was done together with a number of brilliant coauthors
whom I am grateful to for all the discussions. Thanks to Joan Daemen, Lauren
De Meyer, Benjamin Grégoire, Hannes Gross, Matthias Kannwischer, Thorsten
Kranz, Martin Krenn, Gregor Leander, Stefan Mangard, Kostas Papagiannopou-
los, Joost Rĳneveld, Peter Schwabe, and Friedrich Wiemer.

Of the utmost importance was the presence of Brinda, Christoph, Dan,
Engelbert, Erik, Fabian, Freek, Guillaume, Jon, Joost, Joost, Kostas, Léo, Marc,
Matthias, Michael, Niels, Pedro, Pol, Ronny, Sander, and all the other nice
colleagues in and around the Digital Security group – simply too many to list
exhaustively! The ‘around’ extends even to the Eindhoven crew that was always
there. I have fond memories of the countless coffee breaks, Friday drinks, group
outings, movie nights, conferences, summer schools, working groups, weddings,
and other events that we have enjoyed together. These really are the things that
made this PhD possible and I can not imagine what it would have been like
without. A huge thanks to all of you!

v

Acknowledgements

I thank Nick, Kris, and Alex of the Cloudflare crypto team for taking me on
as an intern and for the valuable experience in London and San Francisco.

Next I am grateful to ’t Haasje for keeping me somewhat in shape, for being
able to empty my mind during practice, for challenging competitions, but mostly
for many fun events with its very enthusiastic members.

Then there is the Wĳnnadeeltjes crew with whom I have shared many crazy
adventures over at least as many drinks. Now spread out over the country
and somewhat more mature, but may we continue doing this for a long time.
Thanks!

From way back, thanks to Raphaël and Léon for being great friends for so
long, regardless of how many times our lives have changed. It is hard to express
how appreciated that is.

Finally, I thank my family for their love and support. We have shared many
celebrations of life, but more importantly, you have always been there when we
had to deal with the difficulties of life. Thanks to all of you.

vi

Contents

Acknowledgements v

1 Introduction 1
1.1 Outline and Contributions . 2
1.2 Research Data Management . 7

2 Preliminaries 9
2.1 Mathematics . 9
2.2 Symmetric Cryptology . 11

2.2.1 Idealized Abstractions . 11
2.2.2 Primitives . 12
2.2.3 AES . 13

2.3 Cryptographic Implementations 14
2.3.1 Assembly . 14
2.3.2 ARM Cortex-M . 15
2.3.3 ARM Cortex-A and NEON 15
2.3.4 RISC-V . 16

2.4 Side-Channel Attacks and Countermeasures 16
2.4.1 Timing Attacks . 17
2.4.2 Power and Electromagnetic Attacks 18

I Cryptographic Building Blocks 21

3 S-boxes 23
3.1 Introduction . 23
3.2 Shortest Linear Straight-Line Programs 25
3.3 Optimizing S-box Implementations using SAT Solvers 27

vii

Contents

3.3.1 Notation . 29
3.3.2 Optimizing for Multiplicative Complexity 29
3.3.3 Optimizing for Bitslice Gate Complexity 33
3.3.4 Optimizing for Gate Complexity 36
3.3.5 Optimizing for Depth Complexity 37

3.4 Combining Criteria: Optimizing the PRIMATEs S-box 40
3.5 Conclusion . 43

4 MDS Matrices 45
4.1 Introduction . 45
4.2 Preliminaries . 49

4.2.1 Basic Notations . 49
4.2.2 MDS Constructions . 51
4.2.3 Specially Structured Matrix Constructions 52

4.3 Related Work . 56
4.3.1 Local Optimizations . 56
4.3.2 Global Optimizations . 58

4.4 Results . 61
4.4.1 Improved Implementations of Matrices 61
4.4.2 Statistical Analysis . 65
4.4.3 Best results . 70

5 Column-Parity Mixers 75
5.1 Introduction . 75

5.1.1 Our Contributions . 77
5.2 Column-Parity Mixers and their Properties 78

5.2.1 Matrices . 78
5.2.2 Definition of Column-Parity Mixers 79
5.2.3 Group Properties . 81
5.2.4 The Special Case of Circulant Parity-Folding Matrices . . 82

viii

Contents

5.2.5 Computational Cost . 83
5.3 Propagation of Linear Masks . 84

5.3.1 Linear Propagation in Iterated Permutations 84
5.3.2 Mask Propagation in Column-Parity Mixers 86

5.4 Diffusion Properties . 87
5.4.1 The Column-Parity Kernel 88
5.4.2 Propagation of Isolated Bits 91
5.4.3 Comparison to Other Mixing Layers 92

5.5 A General Design Strategy . 93
5.5.1 Structure of the Round Function 93
5.5.2 Outline of the Steps in our Design Approach 95
5.5.3 Searching Linear and Differential Trails 97

5.6 The Mixifer Permutation . 103
5.6.1 Design Goals . 103
5.6.2 The Construction . 104
5.6.3 Evaluation . 109
5.6.4 The Number of Rounds 118
5.6.5 Implementation Cost . 119
5.6.6 Comparing to Other Ciphers 121

5.7 Conclusions and Future Work . 122

II Optimized Implementations 125

6 ARM Cortex-M 127
6.1 Introduction . 127
6.2 Preliminaries . 129

6.2.1 Implementing AES . 129
6.2.2 ARM Cortex-M . 130
6.2.3 Accelerating Memory Access 131

6.3 Making AES Fast . 133

ix

Contents

6.3.1 Our Implementations . 135
6.3.2 Comparison to Previous Implementations 136
6.3.3 Benchmarking with FELICS 137

6.4 Protecting against Timing Attacks 138
6.4.1 Our Implementation . 139

6.5 Protecting against Side-Channel Attacks 142
6.5.1 Our Implementation . 143
6.5.2 Comparison to Previous Implementations 144

6.6 Conclusion and Outlook . 145

7 RISC-V 147
7.1 Introduction . 147
7.2 The RISC-V Architecture . 149

7.2.1 The RV32I Base Instruction Set 149
7.2.2 Standardized Extensions 151
7.2.3 Benchmarking Platform 152

7.3 AES . 153
7.3.1 Table-based Implementations 154
7.3.2 Bitsliced Implementations 155

7.4 ChaCha . 157
7.4.1 Result . 157

7.5 Keccak . 158
7.5.1 Efficient Scheduling . 158
7.5.2 Bit Interleaving . 158
7.5.3 Lane Complementing . 159
7.5.4 Result . 159

7.6 Arbitrary-Precision Arithmetic 160
7.6.1 Carries and Reduced-Radix Representations 160
7.6.2 Addition . 161
7.6.3 Schoolbook Multiplication 162

x

Contents

7.6.4 Karatsuba Multiplication 163
7.7 Extending RISC-V and Discussion 164

7.7.1 Speed Comparison with ARM Cortex-M4 164
7.7.2 The RISC-V B Extension 166
7.7.3 Number of Registers . 168
7.7.4 Carry Flag . 168

7.8 Conclusion . 169

III Side-Channel Countermeasures 171

8 Vectorization 173
8.1 Introduction . 173
8.2 Preliminaries . 175

8.2.1 Higher-Order Masking of AES 175
8.2.2 Strong Non-interference 176
8.2.3 Bounded-Moment Leakage Model 177
8.2.4 Vectorization with NEON 178

8.3 Vectorizing Masking of AES . 179
8.3.1 Representing the Masked State 179
8.3.2 Parallel Multiplication and Refreshing 180
8.3.3 SubBytes . 185
8.3.4 Linear Layer . 186
8.3.5 Performance . 187

8.4 Side-Channel Evaluation . 190
8.4.1 Measurement Setup . 190
8.4.2 Security Order Evaluation 191
8.4.3 Information-Theoretic Evaluation 195

8.5 Conclusion and Outlook . 197

xi

Contents

9 Reusing Randomness 199
9.1 Introduction . 199
9.2 Masking without Online Randomness 201

9.2.1 Computation on Masked Data 203
9.2.2 Application to Nonlinear Gates 206
9.2.3 Construction of a New Masked AND 208

9.3 Synthesis of First-Order Secure Implementations 215
9.4 Masking AES . 218

9.4.1 SubBytes . 219
9.4.2 Linear Components . 220
9.4.3 Results . 222

9.5 Discussion . 222
9.5.1 Comparison to Previous Work 222
9.5.2 Randomness in Perspective 225
9.5.3 Hardware . 227

9.6 Security Analysis . 229
9.6.1 Formal Verification in the 𝑡-Probing Model 229
9.6.2 Horizontal Attacks . 231
9.6.3 Beyond the 𝑡-Probing Model 235

9.7 Conclusions and Future Work . 236

10 Conclusions and Outlook 239

Bibliography 243

Summary 277

Samenvatting 279

Curriculum Vitae 281

xii

Chapter 1
Introduction

Let me start with the title of this thesis. The title Optimizations in Symmetric

Cryptography is only four words long, yet it expresses in a very compact way what
this thesis is all about. To introduce this thesis and the topics that it contains, we
can use the title and slowly unravel it word by word. For pedagogical reasons, it
makes most sense to start on the right-hand side and move to the left.

The first and arguably the most important word that needs to be understood
is Cryptography. History is filled with stories where protection of information
plays a pivotal role. Whether this information concerns military operations, as
with the invasion of Greece by the Achaemenid Empire under Xerxes I in the fifth
century BC, or love letters, as between queen Marie Antoinette of France and
count Axel von Fersen of Sweden, is of little interest here. Since long before the
term ‘cryptography’ (or ‘cryptology’) was first coined, there have been people
who tried to hide information by scrambling messages and there have been
people who tried to decode these scrambled messages.

This is not any different from today’s situation. In fact, protection of
information may be more pivotal than ever in a largely digitalized society. What
have changed considerably throughout history are the cryptographic methods
that are used to scramble messages and the cryptanalytic methods that are
used to decode messages. Modern-day cryptography is a lot more rigorous,
mathematically speaking. Publicly available scrutiny of cryptographic systems
has significantly improved the security of the systems we use today, despite
more powerful attackers. Another trend is that modern-day cryptography has
become more versatile: it considers more properties than only the confidentiality
of information. For example, it can also give guarantees that a message was not
modified in transit or who sent a particular message.

1

Chapter 1. Introduction

Now is a good moment to move to the next word of the title. The adjective
Symmetric refers to a particular branch of cryptography. The confidentiality of
an encrypted message usually depends on a cryptographic key and only the
holder of this key should be able to decrypt the message. For some historical
cryptographic systems this key may have been a code word, agreed in advance
by the relevant parties. Nowadays that key is usually a string of ones and
zeroes. When the same key is used to encrypt and to decrypt a message, this
is a symmetric cryptographic system. This is unlike asymmetric cryptography,
also called public-key cryptography, which was first realized in the 1970s. In
public-key encryption, the key that is used to decrypt a message is different but
mathematically related to the key that is used to encrypt a message. However,
we need not submerge ourselves into this too much as this thesis only concerns
symmetric cryptography.

Assuming that nobody will argue against skipping the preposition in, that
just leaves Optimizations. This term is sufficiently vague that it spans across all
core chapters of this thesis. Its use should immediately raise a few questions,
such as what, why, and how. The how definitely goes too far for the introduction,
so let’s leave that for later chapters. The answers to what and why partially
follow from the notion that adding cryptography always comes with certain
costs. These costs can be any combination of more CPU cycles, more gates in
an integrated circuit, more electrical energy required, more code complexity,
and so on. Lowering these costs may lead to even more widespread use of
cryptography, improving the security of information. Of course, it is an equally
true statement that many computer scientists and mathematicians just like
optimization problems.

1.1 Outline and Contributions

The core chapters of this thesis are based on a sequence of published papers.
These papers contain contributions to multiple sub-areas in cryptographic

2

1.1. Outline and Contributions

research. While they are certainly related, it felt natural to categorize the work
into three parts.

The chapters in Part I focus on building blocks that are used in the design of
round functions of iterated cryptographic permutations and ciphers. The aim is
to improve these small building blocks such that they increase the security of
the complete scheme as much as possible using as few operations as possible.
The three chapters study three types of cryptographic building blocks: S-boxes,
maximum-distance separable matrices, and column-parity mixers.

Part II continues to optimize cryptographic permutations and ciphers, but at
a different level. Once a scheme has been designed, it has to be implemented
before it can be used in practice. This part covers hand-optimized software
implementations in assembly language for two CPU architectures. Naturally,
the choices that are made at the design stage of a permutation or cipher have
a large impact on what one can do on the implementation level and, the other
way around, design choices are typically made with software and/or hardware
implementations in mind.

Finally, the chapters in Part III consider the common model where an at-
tacker has access to a physical device and attempts to extract secret information,
such as a secret key, using information provided by measurements of physical
characteristics of that device, such as its power consumption. These information
streams are called side channels. Masking is a well-studied countermeasure
against this type of attacker, but it tends to be a costly one: implementations
become much slower and/or bigger. The chapters in this part improve this
with two different approaches. Once more, there is some interaction going
on. Choices made during both the design and the implementation phases of
a cipher impact the cost of applying side-channel countermeasures. Design
and implementation choices can also be made with the cost of side-channel
countermeasures in mind.

3

Chapter 1. Introduction

All core chapters are based on published papers with minor modifications.
These modifications are mostly to make tables and figures fit within the di-
mensions of the current page size and to make the style and formatting more
uniform. Some overlapping preliminaries have been moved to Chapter 2 to
improve the flow for the reader. In a few cases, the scientific content has been
updated, shortened, or otherwise modified. Such modifications are detailed at
the beginning of the respective chapters.

Most chapters are based on joint work with various great coauthors. To
clarify my personal contributions, I will describe per chapter what forms the
basis of the chapter and how I contributed to it.

Chapter 3: S-boxes

This chapter is based on the following publication.
Ko Stoffelen. “Optimizing S-Box Implementations for Several Criteria Using
SAT Solvers”. In: Fast Software Encryption – FSE 2016. Vol. 9783. Lecture
Notes in Computer Science. Springer, Heidelberg, Mar. 2016, pp. 140–160.

All work that is described in this publication is my own. The results on the
multiplicative complexity of S-boxes were obtained while I was writing my
Master’s thesis [Sto15] under supervision of Lejla Batina. The work on all other
optimization criteria, including the part on combining optimization criteria, was
carried out as part of my PhD. The parts on multiplicative complexity, although
technically not a part of my PhD, are only included for completeness.

Chapter 4: MDS Matrices

This chapter is based on the following publication.
Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer.
“Shorter Linear Straight-Line Programs for MDS Matrices”. In: IACR

Transactions on Symmetric Cryptology 2017.4 (2017), pp. 188–211.

The work was a collaboration effort. Personally I worked on implementations
of variants of what we call the BP heuristics and I ran many experiments. I

4

1.1. Outline and Contributions

also wrote parts of the paper and contributed to discussions. The results from
the statistical analysis and the correlation figures were produced by Friedrich
Wiemer and Thorsten Kranz.

Chapter 5: Column-Parity Mixers

This chapter is based on the following publication.
Ko Stoffelen and Joan Daemen. “Column Parity Mixers”. In: IACR Transac-

tions on Symmetric Cryptology 2018.1 (2018), pp. 126–159.

The work was a collaboration effort. Personally I contributed to the development
of the theory on column-parity mixers and their diffusion properties, the general
design strategy, the Mixifer permutation and its security analysis, its software
implementations, and to writing the paper. The work for the subsections
on linear mask propagation, trail clustering, and on impossible differential
cryptanalysis was done by Joan Daemen.

Chapter 6: ARM Cortex-M

This chapter is based on the following publication.
Peter Schwabe and Ko Stoffelen. “All the AES You Need on Cortex-M3 and
M4”. In: SAC 2016: 23rd Annual International Workshop on Selected Areas in

Cryptography. Vol. 10532. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2016, pp. 180–194.

The work was a collaboration effort. Personally I wrote all the code and I wrote
most of the paper.

Chapter 7: RISC-V

This chapter is based on the following publication.
Ko Stoffelen. “Efficient Cryptography on the RISC-V Architecture”. In:
LATINCRYPT 2019: 6th International Conference on Cryptology and Information

Security in Latin America. Vol. 11774. Lecture Notes in Computer Science.
Springer, Heidelberg, Sept. 2019, pp. 323–340.

5

Chapter 1. Introduction

All work that is described in this publication is my own.

Chapter 8: Vectorization

This chapter is based on the following publication.

Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe, and Ko
Stoffelen. “Vectorizing Higher-Order Masking”. In: COSADE 2018: 9th

International Workshop on Constructive Side-Channel Analysis and Secure Design.
Vol. 10815. Lecture Notes in Computer Science. Springer, Heidelberg, Apr.
2018, pp. 23–43.

The work was a collaboration effort. Personally I wrote the optimized imple-
mentations, helped with the lab setup, and wrote large parts of the paper.
The side-channel evaluation was done by Kostas Papagiannopoulous and the
new SNI refreshing and multiplication gadgets were contributed by Benjamin
Grégoire.

Chapter 9: Reusing Randomness

This chapter is based on the following publication.

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn, and Stefan
Mangard. “First-Order Masking with Only Two Random Bits”. In: Proceed-

ings of ACM Workshop on Theory of Implementation Security. TIS’19. ACM,
2019, pp. 10–23.

The work was a collaboration effort. A previous version of the AND gate
and some results for hardware implementations were already put on IACR
ePrint by the other authors before I joined. Since then, the work has changed
direction and improved results considerably. Personally, I wrote the masked
AES implementation, wrote parts of the paper, performed lab and simulator
experiments, and contributed to discussions.

6

1.2. Research Data Management

1.2 Research Data Management

Nearly all software and data that were used or produced for this thesis are
available in online repositories that are publicly accessible. Unless a clearly
marked license file in a repository states otherwise, copyrights and related
rights are waived with the Creative Commons Zero v1.0 Universal waiver. This
maximizes the potential for reuse of the software and data in the future.

References to the repositories are provided throughout this thesis, but they
are also summarized in this section to make them easier to find.

S-box optimization tool
https://github.com/Ko-/sboxoptimization

Shorter linear SLPs for MDS matrices
https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices

Column-parity mixer trail search tool
https://github.com/Ko-/cpm

Mixifer implementations
https://github.com/Ko-/mixifer

AES implementations for ARM Cortex-M3 and M4
https://github.com/Ko-/aes-armcortexm

Implementations of cryptographic primitives for RV32I
https://github.com/Ko-/riscvcrypto

7

https://github.com/Ko-/sboxoptimization
https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices
https://github.com/Ko-/cpm
https://github.com/Ko-/mixifer
https://github.com/Ko-/aes-armcortexm
https://github.com/Ko-/riscvcrypto

Chapter 1. Introduction

Masked AES implementations parallelized with vectorization
https://github.com/Ko-/aes-masked-neon

Masking with two random bits
https://github.com/LaurenDM/TwoRandomBits

In addition to the software and data referred to above, side-channel trace
sets exist related to Chapter 8 and Chapter 9. These are not available online due
to their large sizes. Instead, they are locally stored on a hard disk drive in the
side-channel lab of the Digital Security group at Radboud University and will
remain available upon request.

8

https://github.com/Ko-/aes-masked-neon
https://github.com/LaurenDM/TwoRandomBits

Chapter 2
Preliminaries

This chapter aims to provide some background information on symmetric
cryptology and on closely-related scientific areas. This is also where we establish
some notation commonly used in subsequent chapters. This chapter is by no
means a complete account of everything that there is to know about the topics
that are discussed, but it merely intends to cover the common ground that is
required for other chapters. In those other chapters, these preliminaries are
supplemented with information that is more relevant to a specific chapter. Still,
the reader is referred to a proper textbook or a course if the reader desires
information that is not covered here.

This chapter first explains some basic mathematical concepts in Section 2.1.
It then proceeds with the fundamentals of symmetric cryptology in Section 2.2.
Section 2.3 puts cryptographic algorithms into a physical device, such as a micro-
controller, and explains why implementations are also scientifically interesting.
Finally, Section 2.4 discusses pitfalls of cryptographic implementations, how
they can be attacked, and how these attacks can be prevented.

2.1 Mathematics

Most constructs in cryptology use existing and well-understood concepts from
number theory, algebra, and other branches of mathematics. This makes it easier
to reason about these constructs and therefore to study their security properties,
which is what cryptographers are usually interested in. It is assumed that the
reader is familiar with basic linear algebra, probability theory, predicate logic
and common algebraic structures. Nonetheless, some definitions are available
here as a reference.

9

Chapter 2. Preliminaries

A set 𝑆 is a collection of unique objects, such as different numbers. An
object 𝑎 is an element of a set 𝑆, denoted 𝑎 ∈ 𝑆, when it is one of the objects in
the collection. A set can be specified by listing its objects {𝑎, 𝑏, 𝑐, 𝑑, . . . }, but
that can get quite lengthy when a set contains an infinite number of objects.
Some commonly used sets also have special names. For example, Z is the set of
integers and N is the set of natural numbers. In order to avoid ambiguity, 0 ∈ N
in this thesis.

A group (𝐺, ·) is an algebraic structure that is given by a set 𝐺 and a binary
operation · : 𝐺 × 𝐺 → 𝐺 that satisfies three criteria:

▶ Associativity: ∀𝑎, 𝑏, 𝑐 ∈ 𝐺 : (𝑎 · 𝑏) · 𝑐 = 𝑎 · (𝑏 · 𝑐).

▶ Identity element: ∃𝑒 ∈ 𝐺 : 𝑒 · 𝑎 = 𝑎 · 𝑒 = 𝑎. This element 𝑒 is unique.

▶ Inverse element: ∀𝑎 ∈ 𝐺 : ∃𝑏 ∈ 𝐺 : 𝑎 · 𝑏 = 𝑏 · 𝑎 = 𝑒. This 𝑏 is called the
inverse of 𝑎 and denoted 𝑎−1.

An example of a group is (Z,+), where + is addition of integers. For this
additive example, inverses are denoted −𝑎. A group (𝐺, ·) is Abelian when · is
also commutative: ∀𝑎, 𝑏 ∈ 𝐺 : 𝑎 · 𝑏 = 𝑏 · 𝑎.

A straightforward extension of groups adds another operation. A ring

(𝑅,+, ·) is an algebraic structure where the following criteria hold:

▶ (𝑅,+) is an Abelian group.

▶ · is associative over 𝑅 and has a (multiplicative) identity element.

▶ Distributivity: ∀𝑎, 𝑏, 𝑐 ∈ 𝑅 : 𝑎 ·(𝑏+𝑐) = (𝑎 ·𝑏)+(𝑎 ·𝑐)∧(𝑎+𝑏)·𝑐 = (𝑎 ·𝑐)+(𝑏 ·𝑐).

An example of a ring is (Z,+, ·), where + and · are addition and multiplication
of integers, respectively.

A commutative ring is a ring where the multiplication operation · is also
commutative. A field is a commutative ring where every element of its set also
has a multiplicative inverse under the multiplication operation ·. A group, ring,

10

2.2. Symmetric Cryptology

and field are finite when their set has a finite number of elements. In (symmetric)
cryptology, finite fields are common algebraic structures.

The order of a finite field, often denoted by 𝑞, is defined as the number of
elements in its set. A finite field of a certain order 𝑞 exists if and only if 𝑞 is
some power of a prime number, i. e., 𝑞 = 𝑝𝑘 with 𝑘 a positive integer. Then 𝑝
is also known as the characteristic of the field. In general, there are many ways
to construct a finite field with a specific order 𝑞, but they are all isomorphic.
Intuitively, this means that finite fields of equal order behave the same with
respect to calculations, as there exist reversible mappings between them. This is
why explicit constructions are sometimes ignored and one just speaks of ‘the’
finite field F𝑞 . The smallest finite field is the field with 2 elements, denoted F2,
which can be used to model bits with XOR and AND operations.

2.2 Symmetric Cryptology

In this section we cover several cryptographic primitives that most cryptographic
schemes in symmetric cryptology are built upon. Before we discuss these
primitives, the properties that they provide, and some examples, we look at
idealized abstractions that model the properties that we desire. Finally, we
discuss one instantiation of a cryptographic primitive, AES, in more detail as it
will occur in multiple chapters of this thesis.

2.2.1 Idealized Abstractions

The first notion is that of a pseudorandom permutation (PRP). In general, a
permutation is a bĳective function from some set to itself. A PRP 𝑓 : 𝑋 → 𝑋 is a
permutation 𝑓 from some set 𝑋 to itself, such that it cannot be distinguished
with non-negligible probability from a permutation that is selected uniformly
at random from the set of all permutations over 𝑋. More commonly, a PRP is
defined using a PRP family 𝑓 : 𝐾 × 𝑋 → 𝑋, where there is some key space 𝐾

11

Chapter 2. Preliminaries

and for every 𝑘 ∈ 𝐾 it holds that 𝑓 (𝑘, ·) is a PRP. It is usually required that 𝑓 and
𝑓 −1 are efficiently computable.

A more general notion is that of a pseudorandom function (PRF). The difference
is that a PRF does not require that the function maps a set to itself, but it allows
an arbitrary output set. Consequently, it does not need to be a bĳective mapping
and it may not have an inverse. Clearly, every PRP is also a PRF.

Such idealized abstractions are useful in security proofs. They also clarify
what properties a particular instantiation of a cryptographic primitive should
have.

2.2.2 Primitives

Arguably one of the simplest primitives is the (unkeyed) cryptographic permutation.
This is a function 𝑃 : {0, 1}𝑛 → {0, 1}𝑛 that processes fixed-length blocks such
that 𝑃 is a PRP. Typical examples are the Keccak- 𝑓 permutations [BDPV11b].

Block ciphers also process fixed-length blocks, but add a fixed-length key. More
precisely, a block cipher consists of an encryption function𝐸 : {0, 1} |𝑘 |×{0, 1}𝑛 →
{0, 1}𝑛 and a decryption function 𝐷 : {0, 1} |𝑘 | × {0, 1}𝑛 → {0, 1}𝑛 such that
for all 𝑘 ∈ {0, 1} |𝑘 | and 𝑥 ∈ {0, 1}𝑛 , 𝐷(𝑘, 𝐸(𝑘, 𝑥)) = 𝑥. A secure block cipher
is a family of PRPs. A block cipher can be constructed from a cryptographic
permutation [EM93], but direct instantiations of block ciphers are more common.
The prime example of a block cipher that is heavily used today is AES. We will
discuss its construction in more detail in the Section 2.2.3.

A downside of a block cipher is that one can only use the encryption or
decryption function once there is an input of precisely 𝑛 bits. Stream ciphers are
more flexible and allow inputs of arbitrary length or at least arbitrary multiples
of some block length. Stream ciphers can be constructed from block ciphers by
putting the block cipher in a so-called mode of operation. AES-CTR is a stream
cipher that works like this. They can also be constructed directly, such as the
ChaCha ciphers [Ber08a].

12

2.2. Symmetric Cryptology

A cryptographic hash function, or simply hash function in the context of this
thesis, is another primitive that is used in many cryptographic schemes. A hash
function is an efficiently-computable function ℎ : {0, 1}∗ → {0, 1}𝑛 that maps
arbitrary-length inputs to fixed-length outputs. ℎ needs to satisfy the following
additional criteria:

▶ Pre-image resistance: given 𝑦 = ℎ(𝑥), it should be hard to find any 𝑥′ such
that ℎ(𝑥′) = 𝑦.

▶ Second pre-image resistance: given 𝑥, it should be hard to find any 𝑥′ ≠ 𝑥

such that ℎ(𝑥) = ℎ(𝑥′).

▶ Collision resistance: it should be hard to find any 𝑥, 𝑥′ with 𝑥 ≠ 𝑥′ such that
ℎ(𝑥) = ℎ(𝑥′).

Typical examples are the SHA-2 [NIS15a] and SHA-3 [NIS15b] hash functions.

2.2.3 AES

In this section we zoom in on one particular block cipher, as it appears in all
chapters of this thesis. In 1997, NIST announced that they were looking for a
successor to DES [DES77] and they put out a call for proposals for new ciphers.
All submissions were to be block ciphers that support a block length of 128 bits
and key sizes of 128, 192, and 256 bits. Out of fifteen submissions, Rĳndael was
selected as the winner and it was finally standardized as AES in 2001 [DR02].

The AES design is based on a number of rounds, where each round consists
of a nonlinear substitution of the bytes of the state, followed by linear operations
that aim to spread and mix parts of the state, followed by the addition of a
round key that is derived from the key through a key schedule. These steps are
called SubBytes, ShiftRows, MixColumns, and AddRoundKey in that order. The
first round starts with an initial AddRoundKey and the final round is different
by omitting MixColumns as it does not improve security anymore. AES-128,

13

Chapter 2. Preliminaries

the variant with a key size of 128 bits, has 10 rounds, AES-192 12 rounds, and
AES-256 14 rounds.

The security of AES has been established through years of thorough crypt-
analysis. An attack that is always possible is brute-force search for the correct
key. The amount of effort that this costs is determined by the size of the key, so
for AES-128 this takes 2128 AES operations (or 2127 on average). Linear [Mat94]
and differential [BS91] cryptanalysis are general methods that apply to all block
ciphers and have proved themselves to be powerful attacks in the past. However,
AES was designed with these attacks in mind and its designers have proven that
these attacks require much more effort than brute-force search.

Currently, the best-known attack against AES-128, conveniently ignoring
related-key attacks for the moment, is a biclique attack that requires 2126.13

operations and 256 bits or 9 petabyte of storage [TW15]. Although this implies a
theoretical break of AES, in practice, the biclique attack is unlikely to be faster
than simple brute-force search of the key.

AES is widely deployed and used in many products, protocols, and industries
to securely encrypt data.

2.3 Cryptographic Implementations

Cryptographic algorithms are implemented in a wide range of hardware and
software. A very rough division can be made between ASICs, FPGAs, micro-
controllers, smartphones, high-end CPUs, and GPUs. The topics in this thesis
primarily consider the middle part of this range.

2.3.1 Assembly

A lot of cryptographic implementations are written in assembly language. This
has several advantages. First of all, the implementation is likely to be faster.
This is especially useful if the operation is to be performed many times. A

14

2.3. Cryptographic Implementations

human with knowledge of the mathematical properties of the cryptographic
algorithm can think of optimizations that are beyond what generic compilers can
do. Also note that compilers are optimized to perform well on average, without
affecting the compilation time or binary size too much. This may not be what is
wanted for a cryptographic implementation. Another reason for programming
in assembly is that a compiler may unknowingly alter the behavior of a program.
Statements such as removing a key from memory by overwriting it with zeroes
may be removed by a compiler, because it thinks it is useless if that value is not
read again later.

Some disadvantages of assembly are, of course, that you lose portability
between CPU architectures and that you increase the code complexity. Usually
the idea is that this effort is done once in a software library and everyone else
can then reuse that library.

2.3.2 ARM Cortex-M

Various CPU architectures are mentioned frequently throughout this thesis,
hence they are briefly described in this section. The first is a line of micropro-
cessors called Cortex-M by ARM. This consists of a number of popular 32-bit
low-cost processors for embedded applications that have been used in billions
of devices. These processors generally run lightweight embedded operating
systems or none at all. Although it is described as a RISC architecture, some
models do come with multipliers, divide instructions, DSP instructions, and
floating-point instructions. Noteworthy are the barrel-shift registers that provide
free shifts and rotations of one input of arithmetic instructions.

2.3.3 ARM Cortex-A and NEON

Cortex-A is a group of 32-bit and 64-bit processors that are used in smartphones,
tablets, and other applications that require more performance. These typically
run a full-fledged operating system such as Linux.

15

Chapter 2. Preliminaries

The NEON media processing engine or Advanced SIMD extension extends a
Cortex-A processor with a 64-bit or 128-bit SIMD vector unit that can accelerate
media and signal processing, but it can also be useful for parallel processing in
cryptographic implementations.

2.3.4 RISC-V

ARM designs processors, but they do not build them themselves. Instead, other
companies purchase licenses to use their designs. The RISC-V project is about
creating an open and free instruction set architecture and started originally
at the University of California at Berkeley. There exist both open-source and
proprietary processors that implement this instruction set architecture. There are
32-bit, 64-bit, and 128-bit variants of the instruction set, targeting a wide range
of applications. It should be noted that the base contains very few instructions
and that there are many standardized extensions that bring functionality such
as multiplication, floating-point support, and vector operations, some of which
are still in development.

2.4 Side-Channel Attacks and Countermeasures

Research on cryptographic implementations not only aims to lower the costs of
adding more secure cryptography, but it also aims to make the implementations
themselves more secure. A theoretically secure cipher is not as useful when its
implementation contains flaws that can be exploited to easily extract a secret
key. The attacker may use information about physical characteristics of a
particular implementation, called side channels. To reason about implementation
security it is important to have an explicit attacker model that states what an
attacker is allowed to do. From this it can be determined whether a model is
relevant to a particular use case. For example, on a regular PC a secret key
can often be retrieved by a privileged user by extracting it from memory or
by attaching a debugger to an encryption process. From the perspective of

16

2.4. Side-Channel Attacks and Countermeasures

the implementation of a cryptographic operation in a desktop application, it
is impossible to exclude these types of attacks without relying on assistance
from special-purpose hardware. Hence an implementer may decide that this
attacker model is not too relevant for their use case and accept these risks. On
the other hand, a company that produces credit cards may take sophisticated
side-channel attacks very seriously.

2.4.1 Timing Attacks

One branch of side-channel attacks uses timing information. A simple example
is the case of testing whether two strings are equal by comparing them character
by character and returning when a mismatch occurs. By measuring the time
it takes to do this comparison, an attacker can determine at what position the
strings begin to differ. This turns the hard problem of guessing the right string
into the much simpler problem of guessing the right character a few times in a
row. Kocher famously applied a similar idea to implementations of asymmetric
cryptographic algorithms in 1996 [Koc96].

These timing attacks can be quite subtle. In 2005, Bernstein showed that
full key recovery was possible against the AES implementation in OpenSSL
because of the behavior of caches in CPUs [Ber05a]. The solution is the notion
of constant-time implementations: the running time should be independent of
secret values. But controlling the running time can be hard when there are
many abstraction layers between the code and the physical world. Compilers
may introduce timing variance in code that was intended to be constant-time
for optimization purposes and even a single instruction may turn out to be less
constant-time than one expected due to a hidden mechanism in complex and
proprietary hardware.

Assembly implementations and publicly available documentation of hard-
ware do help out a lot, as well as in-depth testing to the timing behavior of CPU
instructions. Another direction is to put the whole cryptographic operation in

17

Chapter 2. Preliminaries

a hardware circuit, such as with the AES-NI instruction set extension for Intel
and AMD CPUs.

2.4.2 Power and Electromagnetic Attacks

Another branch of side-channel attacks uses other physical characteristics.
In 1999, Kocher, Jaffe, and Jun showed how on many devices, the power
consumption of the device correlates with the instructions and values that are
being processed [KJJ99]. In cryptographic implementations, some of these values
are supposed to be secret. However, by measuring the power consumption across
a cryptographic operation, the implementation may leak the full cryptographic
key. With simple power analysis (SPA), patterns are directly deduced from a single
trace of measurements. Usually this is not enough to recover a key. Differential

power analysis (DPA) is a more powerful attack that requires multiple traces and
some statistics. The main idea is to guess some secret bits (for example, a byte
of a round key in the case of AES) and to perform a statistical test to confirm
whether the guess was correct. A notable variation is correlation power analysis

(CPA) that uses the Pearson correlation coefficient to distinguish between a
correct guess and a wrong guess [BCO04].

Similarly, simple and differential electromagnetic analysis are based on the
fact that a current induces an electromagnetic field that can be measured by
a probe [QS01]. Sometimes it is hard to measure the current going through a
processor directly because of how the processor is integrated into a circuit. Its
electromagnetic field may then be easier to measure. However, a downside can
be that there may be more noise in the measurement of the electromagnetic
field.

A high noise level can be combatted by generating more traces, but this
also increases the amount of effort for an attacker. Some countermeasures
against power and electromagnetic analysis are therefore based on increasing
the amount of noise. The countermeasure that occurs most in this thesis is called

18

2.4. Side-Channel Attacks and Countermeasures

masking. This aims to break the correlation between the physical measurement
and the secret value by adding randomness. Secret values are split into shares
that by themselves are uniformly random. A careful implementation then
performs the computation on the shares in such a way that the computation
remains correct and that secret intermediate values remain uniformly random.

Power and electromagnetic analysis, as well as masking, can be extended to
higher orders. This means that the statistical properties of multiple aspects of a
signal are studied jointly. This can be approached with multivariate statistics or
by first mapping the problem to a univariate problem. For masking, protection
against higher-order attacks means that secret values need to be split into more
shares.

19

PART I

Cryptographic Building Blocks

Chapter 3
S-boxes

As a first cryptographic building block, we consider the nonlinear S-boxes that can

be found in round functions of most iterated permutations or ciphers. This chapter

introduces a technique to optimize implementations of such S-boxes for a number of

optimization criteria. In comparison to the original publication [Sto16b], a few mistakes

that were pointed out by Jérémy Jean are corrected. The S-boxes of RECTANGLE and its

inverse were swapped and in an implementation of LAC there was a typo in a variable

name. Another modification is that the appendices are omitted.

3.1 Introduction

Implementations of cryptographic algorithms are typically optimized for one
or multiple criteria, such as latency, throughput, power consumption, mem-
ory consumption, etc., but also criteria such as the cost of adding masking
countermeasures to protect against side-channel attacks. It is worthwhile to
spend time on this optimization, as the implementations are typically used
many times. It is usually a hard problem to find an implementation that is
actually theoretically minimal with respect to the criteria, e. g., general circuit
minimization is

∑𝑃
2 -complete [BU08]. However, for small functions this is still

possible, using, for instance, SAT solvers. Especially for building blocks that
can be used in multiple cryptographic algorithms, such as S-boxes, it is useful
to look at methods for finding minimal implementations with respect to some
given criteria.

In Section 3.2, we first discuss the simpler problem of finding minimal
implementations of linear functions. We give a brief overview of methods for
finding the shortest linear straight-line program.

23

Chapter 3. S-boxes

We then move toward S-boxes and in Section 3.3 we consider known meth-
ods [CMH13; Mou15] that manage to find minimal implementations for the
relevant optimization criteria of multiplicative complexity [BPP00], bitslice gate
complexity [CHM11], and gate complexity. The definitions of these criteria
are given in Section 3.3. We study how feasible the methods actually are by
applying them to S-boxes that are used in recent cryptographic algorithms,
such as several candidates in the CAESAR competition1 and lightweight block
ciphers. Additionally, we provide tools that allow anyone to conveniently do
the same to other small S-boxes.

Then we look at another optimization criterion: the circuit-depth complexity.
This is relevant in hardware implementations to decrease the delay and to be
able to increase the clock frequency. We suggest a new method for encoding the
circuit-depth-complexity decision problem in SAT and we show how feasible this
method is in practice by providing efficient low-depth S-box implementations
for Joltik [JNP15], Piccolo [SIH+11], LAC [ZWW+14], Prøst [KLL+14], and
RECTANGLE [ZBL+14] in Section 3.3.5.

Section 3.4 discusses how several optimization criteria can be combined, by
first optimizing the S-box used by the PRIMATEs [ABB+14] for multiplicative
complexity and then for gate complexity. This is done by taking the intermediate
result after optimizing for multiplicative complexity, identifying the linear parts
of this, and by treating these as instances of the shortest linear straight-line
program problem.

Full listings of the optimized implementations that are obtained can be found
in the appendices of the original publication [Sto16b].

Contributions presented in this chapter. To summarize, the contributions of
this chapter are:

1 https://competitions.cr.yp.to/caesar.html

24

https://competitions.cr.yp.to/caesar.html

3.2. Shortest Linear Straight-Line Programs

▶ implementations of the S-boxes in Ascon, ICEPOLE, Joltik/Piccolo, Kec-
cak/Ketje/Keyak, LAC, Minalpher, Prøst, and RECTANGLE with a prov-
ably minimal number of nonlinear gates;

▶ a new method for encoding the circuit-depth-complexity decision problem
as an instance of SAT;

▶ optimized and in some cases even provably minimal implementations of
the S-boxes in Joltik/Piccolo, LAC, Prøst, and RECTANGLE with respect
to bitslice gate complexity, gate complexity, and circuit-depth complexity;

▶ a method to combine multiple optimization criteria;

▶ an implementation of the S-box used by the PRIMATEs that is first opti-
mized for multiplicative complexity and then for (bitslice) gate complexity;

▶ tools and documentation to optimize implementations of small nonlinear
functions such as S-boxes using SAT solvers, with respect to multiplicative
complexity, bitslice gate complexity, gate complexity, or circuit-depth
complexity, as described in Section 3.4.

3.2 Shortest Linear Straight-Line Programs

Before tackling the optimization of S-boxes, let us restrict ourselves to linear
functions and let us consider the Shortest Linear Program (SLP) problem over F2.
Let 𝐴 be an 𝑚 × 𝑛 matrix of constants over F2 and let 𝑥 be a vector of 𝑛 variables
over F2. The SLP problem is to find the program with the smallest number of
lines that computes 𝐴𝑥, where every program line is of a certain form.

Let 𝑍 be a set of variables over F2, that initially contains the input variables
{𝑥0 , . . . , 𝑥𝑛−1}. Let 𝑧𝑖 , 𝑧 𝑗 ∈ 𝑍. Then every program line is of the form

𝑧′ := 𝑧𝑖 + 𝑧 𝑗 .

25

Chapter 3. S-boxes

After executing this program line, the new variable 𝑧′ is added to the set,
𝑍 := 𝑍∪{𝑧′}. The new variable 𝑧′ can therefore be used in the next program line.
The program is said to compute 𝐴𝑥 when there exists a vector (𝑧1 , . . . , 𝑧𝑚) ∈ 𝑍𝑚

such that 𝐴𝑥 = (𝑧1 , . . . , 𝑧𝑚)⊺.

Being able to find the shortest straight-line linear program has obvious
applications to cryptology. Solving the SLP over F2 is equivalent to finding
the shortest circuit to compute a function using only XOR gates. Optimizing
implementations of linear operations, such as MixColumns in AES and the
linear components of certain implementations of SubBytes, can therefore be
seen as instances of the SLP problem over F2. However, this method does not
apply to nonlinear operations such as S-boxes. We show in Section 3.3 what
kind of methods can be used in such cases.

Solving the SLP problem. Boyar, Matthews, and Peralta showed that the SLP
problem over F2 is NP-hard [BMP08]. Off-the-shelf SAT solvers can be used to
find solutions for small instances of this problem. Fuhs and Schneider-Kamp
presented a method [FS10] to encode the SLP problem as an instance of SAT
and they show how this can be used to optimize the affine transformation of
AES’s SubBytes [FS10; FS12].

For larger instances, exact methods will quickly become infeasible. Alterna-
tively, Boyar and Peralta published an approach to solve the SLP problem over
F2 based on a heuristic [BP10]. In short, the heuristic method uses a base vector
set 𝑆, initialized with unit vectors for all variables in 𝑥, and a distance vector
Dist that keeps track of the minimal Hamming distance to 𝑆 for each row in 𝐴.
Repeatedly, the sum of the pair of base vectors in 𝑆 that minimizes the sum of
Dist is added to 𝑆 and Dist is updated, until Dist is the all-zero vector. If there is
a tie between two pairs of base vectors, the pair that maximizes the Euclidean
length of the new Dist vector is chosen. This algorithm makes it possible to find
solutions to larger instances of the SLP problem.

26

3.3. Optimizing S-box Implementations using SAT Solvers

3.3 Optimizing S-box Implementations using SAT Solvers

For nonlinear functions such as S-boxes, known approaches based on heuris-
tics [BP10] all exploit additional algebraic structure that may be available, e. g.,
as for the S-box of AES. However, in general this additional structure may not
exist and one may need to fall back to generic methods such as SAT solvers.

S-box implementations in both software and hardware can be optimized
with SAT solvers according to several criteria. In this chapter we consider the
following four optimization goals:

Multiplicative complexity. The multiplicative complexity of a function [BPP00]
is defined as the smallest number of nonlinear gates with fan-in 2 required
to compute this function. If we restrict our S-box implementations to the
{AND, OR, XOR, NOT} operations, we only need to consider the number of ANDs
and ORs. Optimizing for this goal is useful in the case of protecting against
side-channel attacks using random masks, where nonlinear gates are typically
more expensive to mask. There are also applications in multi-party computation
and fully homomorphic encryption, where the cost of nonlinear operations is
even more significant [ARS+15].

Bitslice gate complexity. The bitslice gate complexity of a function [CHM11] is
defined as the smallest number of operations in {AND, OR, XOR, NOT} required to
compute this function. This translates directly to efficient bitsliced software im-
plementations, as on most common CPU architectures, there are no instructions
for computing NAND, NOR, or XNOR immediately.

Gate complexity. The gate complexity of a function is defined as the smallest
number of logic gates required to compute this function. Unlike for bitslice
gate complexity, NAND, NOR, and XNOR gates are now also allowed. This translates
to efficient hardware implementations, although the different amounts of area

27

Chapter 3. S-boxes

required by these types of gates and the different delays still need to be taken
into account. Note that we only consider gates with a fan-in of at most 2.

Circuit-depth complexity. The depth of a circuit is defined as the length of
the longest paths from an input gate to an output gate. Every function can
be computed by a circuit with depth 2, e. g., by expressing the function in
conjunctive or disjunctive normal form. However, this can lead to very wide
circuits with a lot of gates, which is typically not desirable. There is somewhat of
a trade-off between circuit depth and number of gates. Still, optimizing for this
goal is useful in the case of hardware implementations, to be able to decrease
the total delay and therefore to be able to increase the clock frequency. Again,
only gates with a fan-in of at most 2 are considered.

These criteria come with corresponding decision problems. For example,
given a function 𝑓 and some positive integer 𝑘, the multiplicative-complexity

decision problem is defined as:

“Is there a circuit that implements 𝑓 and that uses at most 𝑘 nonlinear
operations?”

The decision problems for the other three optimization goals can be defined
analogously. Off-the-shelf SAT solvers can be used to solve these decision
problems. When a SAT solver successfully finds a circuit for some value 𝑘 but
outputs UNSAT for 𝑘 − 1, it is proven that 𝑘 is the minimum value. Note that
when a SAT solver outputs SAT for some value 𝑘, it also provides a satisfying
valuation that can be used to reconstruct an implementation of 𝑓 .

In order to use SAT solvers to solve these decision problems, the problems
first have to be encoded in logical formulas in conjunctive normal form (CNF),
because that is the input format that the SAT solver requires.

28

3.3. Optimizing S-box Implementations using SAT Solvers

3.3.1 Notation

For the encoding, we use the notation of Mourouzis [Mou15]. We consider
systems of multivariate equations over F2. In these equations, let

▶ 𝑥𝑖 be variables representing S-box inputs;

▶ 𝑦𝑖 be variables representing S-box outputs;

▶ 𝑞𝑖 be variables representing gate inputs;

▶ 𝑡𝑖 be variables representing gate outputs;

▶ 𝑎𝑖 be variables representing wiring between gates; and

▶ 𝑏𝑖 be variables representing wiring inside gates. This will become more
clear when they are first used in Section 3.3.3.

In the implementations the logical connectives are used to denote the types of
operations. Let ∧, ∨, ⊕, ¬ denote AND, OR, XOR, NOT, respectively, and let ↑, ↓, ↔
denote NAND, NOR, XNOR, respectively.

3.3.2 Optimizing for Multiplicative Complexity

Courtois, Mourouzis, and Hulme [CMH13; Mou15] suggested a method to
encode the multiplicative-complexity decision problem. Let 𝑓 : F𝑛2 → F𝑚2 be an
S-box and let 𝑘 be the multiplicative complexity that we want to test for. Then
first create a set of equations 𝐶 in ANF consisting of:

▶ ∀𝑖 ∈ {0, . . . , 𝑘 − 1}: 𝑡𝑖 = 𝑞2𝑖 · 𝑞2𝑖+1, to encode the 𝑘 AND gates.

▶ ∀𝑖 ∈ {0, . . . , 2𝑘 − 1}: 𝑞𝑖 = 𝑎𝑙 +
(∑𝑛−1

𝑗=0 𝑎𝑙+𝑗+1 · 𝑥 𝑗
)
+

(∑⌊ 𝑖
2 ⌋−1

𝑗=0 𝑎𝑙+𝑛+𝑗+1 · 𝑡 𝑗
)
,

where 𝑙 = 𝑖(𝑛+1)+
⌊
𝑖2−2𝑖+1

4

⌋
, to encode that the inputs of the AND gates can

be any linear combination of S-box inputs and previous AND-gate outputs.
The single 𝑎 represents an optional NOT gate.

29

Chapter 3. S-boxes

▶ ∀𝑖 ∈ {0, . . . , 𝑚 − 1}: 𝑦𝑖 =
(∑𝑛−1

𝑗=0 𝑎𝑠+𝑗 · 𝑥 𝑗
)
+

(∑𝑘−1
𝑗=0 𝑎𝑠+𝑛+𝑗 · 𝑡 𝑗

)
, where 𝑠 =

2𝑘(𝑛 + 1) + 𝑘(𝑘 − 1) + 𝑖(𝑛 + 𝑘), to encode that the S-box outputs can be any
linear combination of S-box inputs and AND-gate outputs.

For example, when 𝑛 = 𝑚 = 4 and 𝑘 = 3, this leads to the following set of
equations 𝐶:

𝑞0 = 𝑎0 + 𝑎1 · 𝑥0 + 𝑎2 · 𝑥1 + 𝑎3 · 𝑥2 + 𝑎4 · 𝑥3

𝑞1 = 𝑎5 + 𝑎6 · 𝑥0 + 𝑎7 · 𝑥1 + 𝑎8 · 𝑥2 + 𝑎9 · 𝑥3

𝑡0 = 𝑞0 · 𝑞1

𝑞2 = 𝑎10 + 𝑎11 · 𝑥0 + 𝑎12 · 𝑥1 + 𝑎13 · 𝑥2 + 𝑎14 · 𝑥3 + 𝑎15 · 𝑡0
𝑞3 = 𝑎16 + 𝑎17 · 𝑥0 + 𝑎18 · 𝑥1 + 𝑎19 · 𝑥2 + 𝑎20 · 𝑥3 + 𝑎21 · 𝑡0
𝑡1 = 𝑞2 · 𝑞3

𝑞4 = 𝑎22 + 𝑎23 · 𝑥0 + 𝑎24 · 𝑥1 + 𝑎25 · 𝑥2 + 𝑎26 · 𝑥3 + 𝑎27 · 𝑡0 + 𝑎28 · 𝑡1
𝑞5 = 𝑎29 + 𝑎30 · 𝑥0 + 𝑎31 · 𝑥1 + 𝑎32 · 𝑥2 + 𝑎33 · 𝑥3 + 𝑎34 · 𝑡0 + 𝑎35 · 𝑡1
𝑡2 = 𝑞4 · 𝑞5

𝑦0 = 𝑎36 · 𝑥0 + 𝑎37 · 𝑥1 + 𝑎38 · 𝑥2 + 𝑎39 · 𝑥3 + 𝑎40 · 𝑡0 + 𝑎41 · 𝑡1 + 𝑎42 · 𝑡2
𝑦1 = 𝑎43 · 𝑥0 + 𝑎44 · 𝑥1 + 𝑎45 · 𝑥2 + 𝑎46 · 𝑥3 + 𝑎47 · 𝑡0 + 𝑎48 · 𝑡1 + 𝑎49 · 𝑡2
𝑦2 = 𝑎50 · 𝑥0 + 𝑎51 · 𝑥1 + 𝑎52 · 𝑥2 + 𝑎53 · 𝑥3 + 𝑎54 · 𝑡0 + 𝑎55 · 𝑡1 + 𝑎56 · 𝑡2
𝑦3 = 𝑎57 · 𝑥0 + 𝑎58 · 𝑥1 + 𝑎59 · 𝑥2 + 𝑎60 · 𝑥3 + 𝑎61 · 𝑡0 + 𝑎62 · 𝑡1 + 𝑎63 · 𝑡2

This set of equations does not depend on 𝑓 yet, but only on the values of
𝑛 and 𝑚. The equations in 𝐶 have to be satisfied for all possible S-box inputs.
An equation set 𝐶′ is created that contains 2𝑛 copies of the equations in 𝐶, in
which all 𝑥𝑖 , 𝑦𝑖 , 𝑞𝑖 , 𝑡𝑖 are renumbered, but in which all 𝑎𝑖 , 𝑏𝑖 remain the same.
𝑓 is bound to the problem description by adding its truth table as 2𝑛(𝑛 + 𝑚)
constant equations, i. e., one for every bit in both the S-box input and the S-box
output, to 𝐶′.

30

3.3. Optimizing S-box Implementations using SAT Solvers

𝐶′ is in ANF. The method by Bard, Courtois, and Jefferson [BCJ07] for
converting sparse systems of low-degree multivariate binary polynomials is
used to convert 𝐶′ to CNF, such that it is understood by the SAT solver.

Results. This method makes it feasible to find the multiplicative complexity
of several 4-bit and 5-bit S-boxes. Finding the multiplicative complexity comes
with an actual implementation that uses this minimal number of nonlinear gates.
After Courtois, Hulme, and Mourouzis applied this method to the S-boxes of
PRESENT and GOST [CHM11], we show that we can also find results for more
recently introduced 4-bit and 5-bit S-boxes.

We consider the S-boxes, and if applicable, their inverses (denoted by −1), in
Ascon [DEMS16], ICEPOLE [MGH+14], Keccak [BDPV11b]/Ketje [BDP+16a]/
Keyak [BDP+16b], all PRIMATEs [ABB+14], Joltik [JNP15]/Piccolo [SIH+11],
LAC [ZWW+14], Minalpher [STA+15], Prøst [KLL+14], and RECTANGLE [ZBL+14].
Minalpher’s and Prøst’s S-boxes are involutory, which is why their inverses are
not listed separately. The inverse S-boxes in Ascon, ICEPOLE, Keccak, Ketje,
and Keyak are not actually used in decryption and are therefore not considered.

For all S-boxes except the one used by the PRIMATEs we are able to prove
the multiplicative complexity. The results are summarized in Table 3.1. The
actual implementations can be found in the original publication [Sto16b], but
note that these should most likely not be used by themselves as we are being
very generous with XOR gates. The linear parts should be optimized separately,
as we will demonstrate in Section 3.4.

These and subsequent results are obtained using MiniSat 2.2.02 and Cryp-
toMiniSat 2.9.103 using default parameters on a single core of an Intel Xeon
E7-4870 v2 running at 2.30 GHz.

2 https://www.minisat.se/MiniSat.html

3 https://www.msoos.org/cryptominisat2/

31

https://www.minisat.se/MiniSat.html
https://www.msoos.org/cryptominisat2/

Chapter 3. S-boxes

Table 3.1: Multiplicative complexity of S-boxes.

S-box Size Multiplicative complexity

Ascon 5 5
ICEPOLE 5 6
Keccak/Ketje/Keyak 5 5
PRIMATEs 5 ∈ {6, 7}
PRIMATEs−1 5 ∈ {6, 7, 8, 9, 10}
Joltik/Piccolo 4 4
Joltik−1 /Piccolo−1 4 4
LAC 4 4
Minalpher 4 5
Prøst 4 4
RECTANGLE 4 4
RECTANGLE−1 4 4

For the PRIMATEs S-box and inverse S-box, we find solutions for 𝑘 = 7 and
𝑘 = 10, respectively. Furthermore, we find for both S-boxes that the case for
𝑘 = 5 yields UNSAT. We have started several attempts to find a decisive answer
for 𝑘 = 6, including:

▶ reducing the CNF, e. g., using NICESAT [CMV09];

▶ fine-tuning SAT solver parameters;

▶ trying other SAT solvers;

▶ trying other SAT solvers that can run in parallel on many cores, such as
Plingeling and Treengeling;4 and

4 http://fmv.jku.at/lingeling/

32

http://fmv.jku.at/lingeling/

3.3. Optimizing S-box Implementations using SAT Solvers

▶ letting all of this run for several months on a machine with 120 cores and
3 TB of RAM.

Unfortunately, none of these attempts resulted in an answer as no solver
instance has terminated yet. As these SAT solvers typically have much more
difficulty with proving the UNSAT case than proving the SAT case, and as the SAT
proof for 𝑘 = 7 was found in less than 40 hours, we expect the 𝑘 = 6 case to
yield UNSAT and we therefore conjecture the multiplicative complexity of the
PRIMATEs S-box to be 7. In Section 3.4 we go into more detail on optimizing the
PRIMATEs S-box. For the inverse S-box, we did not manage to find solutions for
𝑘 ∈ {6, 7, 8, 9}.

3.3.3 Optimizing for Bitslice Gate Complexity

In the same work [CMH13; Mou15], a method is given to optimize for bitslice
gate complexity. However, it is only applied on the small CTC2 toy cipher
and therefore it remains unclear how practical this method is for real-world
ciphers. We investigate this by applying the method to the same S-boxes as in
the previous section.

The encoding scheme for the bitslice-gate-complexity decision problem is
slightly different compared to the multiplicative-complexity decision problem.
Let 𝑓 : F𝑛2 → F𝑚2 again be an S-box and let 𝑘 now be the bitslice gate complexity
that we want to test for. Then our first set of equations 𝐶 in ANF consists of:

▶ ∀𝑖 ∈ {0, . . . , 𝑘−1}: 𝑡𝑖 = 𝑏3𝑖 ·𝑞2𝑖 ·𝑞2𝑖+1+𝑏3𝑖+1 ·𝑞2𝑖+𝑏3𝑖+1 ·𝑞2𝑖+1+𝑏3𝑖+2+𝑏3𝑖+2 ·𝑞2𝑖 ,
to encode the 𝑘 AND, OR, XOR or NOT gates. The 𝑏𝑖 determine what kind of
gate this will represent, as can be seen in Table 3.2.

▶ ∀𝑖 ∈ {0, . . . , 𝑘 − 1}: 0 = 𝑏3𝑖 · 𝑏3𝑖+2 and 0 = 𝑏3𝑖+1 · 𝑏3𝑖+2, to make sure that
the gate is either a unary NOT or a binary AND, OR, or XOR, but not one of
them combined with a NOT. This excludes NAND, NOR, and XNOR gates.

33

Chapter 3. S-boxes

▶ ∀𝑖 ∈ {0, . . . , 2𝑘 − 1}: 𝑞𝑖 =

(∑𝑛−1
𝑗=0 𝑎𝑙+𝑗 · 𝑥 𝑗

)
+

(∑⌊ 𝑖
2 ⌋−1

𝑗=0 𝑎𝑙+𝑛+𝑗 · 𝑡 𝑗
)
, where

𝑙 = 𝑖𝑛 +
⌊
𝑖2−2𝑖+1

4

⌋
, to encode that the inputs of the gates can be any S-box

input bit or any previously computed bit.

▶ ∀𝑖 ∈ {0, . . . , 2𝑘−1},∀𝑗 ∈ {𝑙 , . . . , 𝑙+𝑛+
⌊
𝑖
2
⌋
−2},∀𝑢 ∈ { 𝑗+1, . . . , 𝑙+𝑛+

⌊
𝑖
2
⌋
−1}:

0 = 𝑎 𝑗 · 𝑎𝑢 , to encode an at-most-one constraint on the gate inputs.

▶ ∀𝑖 ∈ {0, . . . , 𝑚 − 1}: 𝑦𝑖 =
(∑𝑛−1

𝑗=0 𝑎𝑠+𝑗 · 𝑥 𝑗
)
+

(∑𝑘−1
𝑗=0 𝑎𝑠+𝑛+𝑗 · 𝑡 𝑗

)
, where 𝑠 =

2𝑘𝑛 + 𝑘(𝑘 − 1) + 𝑖(𝑛 + 𝑘), to encode that the S-box output bit can be any
S-box input bit or any gate output.

▶ ∀𝑖 ∈ {0, . . . , 𝑚−1}, ∀𝑗 ∈ {𝑠, . . . , 𝑠+𝑛+ 𝑘−2}, ∀𝑢 ∈ { 𝑗+1, . . . , 𝑠+𝑛+ 𝑘−1}:
0 = 𝑎 𝑗 · 𝑎𝑢 , to encode an at-most-one constraint on the S-box outputs.

Table 3.2: Gate modifiers for bitslice gate complexity.

𝑏3𝑖𝑏3𝑖+1𝑏3𝑖+2 Gate 𝑡𝑖 function

000 0
001 ¬𝑞2𝑖

010 𝑞2𝑖 ⊕ 𝑞2𝑖+1

011 Prevented by constraint on 𝑏3𝑖+2

100 𝑞2𝑖 ∧ 𝑞2𝑖+1

101 Prevented by constraint on 𝑏3𝑖+2

110 𝑞2𝑖 ∨ 𝑞2𝑖+1

111 Prevented by constraint on 𝑏3𝑖+2

Converting 𝐶 to 𝐶′ and then to CNF is the same process as with the
multiplicative-complexity decision problem. Note that the constraint equations
on 𝑎𝑖 and 𝑏 𝑗 do not have to be duplicated 2𝑛 times for 𝐶′, as they are not
renumbered. This saves a lot of redundant clauses.

34

3.3. Optimizing S-box Implementations using SAT Solvers

Results. As the amount of CNF clauses that is necessary to describe the
bitslice-gate-complexity decision problem becomes much larger compared to
the multiplicative-complexity decision problem, it can take much more time
for a SAT solver to actually solve a problem instance. Still, for some 4-bit and
5-bit S-boxes results can be obtained within minutes or within a few hours.
Table 3.3 contains some examples. If a bitslice gate complexity is listed as ≤ 𝑘, a
solution was found for 𝑘, but we were unable to prove that this is the minimum
because the SAT solver did not terminate within a reasonable amount of time
for 𝑘 − 1. Similarly, in some cases a lower bound was found because the SAT
solver was able to determine that no circuit exists with that numbers of gates.
The actual implementations with the given number of operations can be found
in the original publication [Sto16b].

Table 3.3: Bitslice gate complexity of S-boxes.

S-box Size Bitslice gate
complexity

Implementation

Keccak/Ketje/Keyak 5 ≤ 13 3 AND, 2 OR, 5 XOR, 3 NOT
Joltik/Piccolo 4 10 1 AND, 3 OR, 4 XOR, 2 NOT
Joltik−1 /Piccolo−1 4 10 1 AND, 3 OR, 4 XOR, 2 NOT
LAC 4 11 2 AND, 2 OR, 6 XOR, 1 NOT
Minalpher 4 ≥ 11
Prøst 4 8 4 AND, 4 XOR
RECTANGLE 4 ∈ {10, 11, 12} 4 OR, 7 XOR, 1 NOT
RECTANGLE−1 4 ∈ {11, 12} 1 AND, 3 OR, 7 XOR, 1 NOT

For Prøst, it is interesting to note that the SAT solvers are able to find the
same implementations as its authors already suggested. We have proven that
their bitsliced implementation is indeed minimal.

35

Chapter 3. S-boxes

3.3.4 Optimizing for Gate Complexity

A method to encode the gate-complexity decision problem was also provided
by Courtois, Mourouzis, and Hulme [CMH13; Mou15], but again, actual results
were only given for the CTC2 toy cipher. We show that it is feasible to compute
the gate complexity for real-world 4-bit S-boxes as well.

The encoding is very similar to the bitslice-gate-complexity decision problem.
The first set of equations 𝐶 in ANF only differs in two places:

▶ Instead of the previous rule for 𝑡𝑖 , the gates are encoded differently:
∀𝑖 ∈ {0, . . . , 𝑘 − 1}: 𝑡𝑖 = 𝑏3𝑖 · 𝑞2𝑖 · 𝑞2𝑖+1 + 𝑏3𝑖+1 · 𝑞2𝑖 + 𝑏3𝑖+1 · 𝑞2𝑖+1 + 𝑏3𝑖+2, to
encode the 𝑘 gates. The 𝑏𝑖 determine what kind of gate this will represent,
as can be seen in Table 3.4.

▶ The additional constraints on the 𝑏𝑖 are completely omitted.

Converting 𝐶 to 𝐶′ and then to CNF is similar to the previous optimization
goals.

Table 3.4: Gate modifiers for gate complexity.

𝑏3𝑖𝑏3𝑖+1𝑏3𝑖+2 Gate 𝑡𝑖 function

000 0
001 1
010 𝑞2𝑖 ⊕ 𝑞2𝑖+1

011 𝑞2𝑖 ↔ 𝑞2𝑖+1

100 𝑞2𝑖 ∧ 𝑞2𝑖+1

101 𝑞2𝑖 ↑ 𝑞2𝑖+1

110 𝑞2𝑖 ∨ 𝑞2𝑖+1

111 𝑞2𝑖 ↓ 𝑞2𝑖+1

36

3.3. Optimizing S-box Implementations using SAT Solvers

Results. Our results on real-world 4-bit S-boxes are summarized in Table 3.5.
The full implementations can be found in the original publication [Sto16b]. For
the studied 5-bit S-boxes we did not manage to retrieve results. Note that all
types of logic gates are considered equally expensive. There is no type of gate
that is preferred over the other, because information such as differences in area
consumption or time delay are not taken into account. The implementations
found by the SAT solver should therefore not be used directly for hardware
implementations. However, they serve as an optimal starting point from where to
swap “expensive” gates for cheaper ones, depending on the specific technology
that is to be used. For example, the designers of Piccolo suggested a hardware
implementation [SIH+11] of their S-box that may or may not be more efficient
than the implementation given here, depending on the specific technology.

Table 3.5: Gate complexity of 4-bit S-boxes.

S-box Gate
complexity

Implementation

Joltik/Piccolo 8 2 OR, 1 XOR, 2 NOR, 3 XNOR
Joltik−1 /Piccolo−1 8 2 OR, 1 XOR, 2 NOR, 3 XNOR
LAC 10 1 AND, 3 OR, 2 XOR, 4 XNOR
Prøst 8 4 AND, 4 XOR
RECTANGLE ∈ {10, 11} 1 AND, 1 OR, 6 XOR, 1 NAND, 1 NOR, 1 XNOR
RECTANGLE−1 ∈ {10, 11} 1 AND, 1 OR, 2 XOR, 1 NAND, 1 NOR, 5 XNOR

3.3.5 Optimizing for Depth Complexity

There are many situations in high-speed hardware implementations where the
implementer wants to keep the depth of the circuit as low as possible, in order
to be able to increase the clock frequency, without having to use significantly
more gates. We provide a novel method to find low-depth implementations of

37

Chapter 3. S-boxes

small functions such as S-boxes using SAT solvers. This method is inspired by
the encoding of the gate-complexity decision problem, but modified in some
important ways.

In the encoding of the gate-complexity decision problem, we expressed that
every gate can use the S-box input and the outputs of previous gates as its input.
The key idea here is to divide the circuit into depth layers and to encode the
notion that a gate can only use the S-box input and the output of gates in the
previous layers as its input. This is made more precise later.

First we note that it is useful to limit the potential increase in the number of
gates when reducing the depth of a circuit, to simplify the encoding and to limit
the search space. We introduce a fixed maximum layer width 𝑤 to address this,
so we allow at most 𝑤 gates to be executed in parallel. For some function 𝑓 , we
want to be able to answer questions such as: “is there a circuit implementing 𝑓

with depth 𝑘 and with at most 𝑤 gates on each depth layer?”.
Using this fixed maximum layer width, we make our encoding method more

precise by once more creating a set 𝐶 of multivariate equations over F2 in ANF
that consists of:

▶ ∀𝑖 ∈ {0, . . . , 𝑘𝑤 − 1}: 𝑡𝑖 = 𝑏3𝑖 · 𝑞2𝑖 · 𝑞2𝑖+1 + 𝑏3𝑖+1 · 𝑞2𝑖 + 𝑏3𝑖+1 · 𝑞2𝑖+1 + 𝑏3𝑖+2,
to encode the 𝑘𝑤 gates. The 𝑏𝑖 determine what kind of gate this will
represent, as can be seen in Table 3.4.

▶ ∀𝑖 ∈ {0, . . . , 2𝑘𝑤 − 1}: 𝑞𝑖 =

(∑𝑛−1
𝑗=0 𝑎𝑙+𝑗 · 𝑥 𝑗

)
+

(∑𝑣−1
𝑗=0 𝑎𝑙+𝑛+𝑗 · 𝑡 𝑗

)
, where

𝑣 =
⌊
𝑖

2𝑤
⌋
𝑤 and 𝑙 = 𝑖𝑛+𝑣 (𝑖 − 𝑣 − 𝑤), to encode that the inputs of the gates

can be any S-box input bit or any previously computed bit.

▶ ∀𝑖 ∈ {0, . . . , 2𝑘𝑤−1},∀𝑗 ∈ {𝑙 , . . . , 𝑙+𝑛+𝑣−2},∀𝑢 ∈ { 𝑗+1, . . . , 𝑙+𝑛+𝑣−1}:
0 = 𝑎 𝑗 · 𝑎𝑢 , to encode an at-most-one constraint on the gate inputs.

▶ ∀𝑖 ∈ {0, . . . , 𝑚 − 1}: 𝑦𝑖 =

(∑𝑛−1
𝑗=0 𝑎𝑠+𝑗 · 𝑥 𝑗

)
+

(∑𝑘𝑤−1
𝑗=0 𝑎𝑠+𝑛+𝑗 · 𝑡 𝑗

)
, where

𝑠 = 𝑘𝑤(2𝑛 + 𝑘𝑤 − 𝑤) + 𝑖(𝑛 + 𝑘𝑤), to encode that the S-box output bit can
be any S-box input bit or any gate output.

38

3.3. Optimizing S-box Implementations using SAT Solvers

▶ ∀𝑖 ∈ {0, . . . , 𝑚−1},∀𝑗 ∈ {𝑠, . . . , 𝑠+𝑛+𝑘𝑤−2},∀𝑢 ∈ { 𝑗+1, . . . , 𝑠+𝑛+𝑘𝑤−1}:
0 = 𝑎 𝑗 · 𝑎𝑢 , to encode an at-most-one constraint on the S-box outputs.

Converting 𝐶 to 𝐶′ and subsequently expressing this in CNF is again the
same process as before.

Results. Using our method, we are able to find low-depth implementations for
our 4-bit S-boxes. The results are summarized in Table 3.6 and the corresponding
implementations can be found in the original publication [Sto16b]. The last
column in Table 3.6 lists scenarios that yield UNSAT, to show boundaries on what
is possible. The trade-off between circuit depth and the number of gates is made
here in such a way that reducing the depth by 1 would imply the implementation
to have at least twice as many gates as is required by the gate complexity.

Table 3.6: Depth complexity of 4-bit S-boxes.

S-box 𝑘 𝑤 Implementation UNSAT boundaries

Joltik/Piccolo 4 2 2 OR, 1 XOR,
2 NOR, 3 XNOR

𝑘 = 4, 𝑤 = 1
𝑘 = 3, 𝑤 = 10

Joltik−1 /Piccolo−1 4 3 3 OR, 5 XOR,
1 NOR, 3 XNOR

𝑘 = 4, 𝑤 = 2
𝑘 = 3, 𝑤 = 10

LAC 3 6 3 OR, 4 XOR,
4 NAND, 4 XNOR

𝑘 = 3, 𝑤 = 4
𝑘 = 2, 𝑤 = 10

Prøst 4 3 4 AND, 1 OR, 4 XOR,
1 NAND, 1 XNOR

𝑘 = 4, 𝑤 = 2
𝑘 = 3, 𝑤 = 10

RECTANGLE 3 6 1 OR, 8 XOR,
3 NAND, 2 NOR, 2 XNOR

𝑘 = 3, 𝑤 = 4
𝑘 = 2, 𝑤 = 10

RECTANGLE−1 3 6 2 AND, 3 OR, 5 XOR,
1 NAND, 1 NOR, 3 XNOR

𝑘 = 3, 𝑤 = 4
𝑘 = 2, 𝑤 = 10

39

Chapter 3. S-boxes

3.4 Combining Criteria: Optimizing the PRIMATEs S-box

So far, we have seen how to optimize for one specific goal. However, a result
that is optimized for multiplicative complexity may contain more XOR gates
than is desired, and a result that is optimized for gate complexity may contain
more nonlinear gates than is desired for a masked implementation. Here we
show how multiple optimization goals can be combined by looking at the 5-bit
PRIMATEs S-box. We first optimize for multiplicative complexity to have a
minimal number of nonlinear gates, and subsequently we minimize the number
of linear gates. The result is an implementation that has 4 AND, 3 OR, 31 XOR, and
5 NOT gates.

Listing 3.1: PRIMATEs S-box after optimizing for multiplicative complexity.

𝑞0 = 𝑥0 ⊕ 𝑥3

𝑞1 = 𝑥1

𝑡0 = 𝑞0 ∨ 𝑞1

𝑞2 = ¬(𝑥1 ⊕ 𝑥3)

𝑞3 = 𝑥0 ⊕ 𝑥2

𝑡1 = 𝑞2 ∧ 𝑞3

𝑞4 = 𝑥0 ⊕ 𝑥1 ⊕ 𝑥4

𝑞5 = 𝑥0 ⊕ 𝑥2 ⊕ 𝑥3

𝑡2 = 𝑞4 ∧ 𝑞5

𝑞6 = ¬(𝑥0 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4)

𝑞7 = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥4

𝑡3 = 𝑞6 ∨ 𝑞7

𝑞8 = 𝑥0 ⊕ 𝑥1 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4

𝑞9 = 𝑥2 ⊕ 𝑡0 ⊕ 𝑡3
𝑡4 = 𝑞8 ∧ 𝑞9

𝑞10 = 𝑥0 ⊕ 𝑥3 ⊕ 𝑥4

𝑞11 = ¬(𝑥0 ⊕ 𝑥4)

𝑡5 = 𝑞10 ∨ 𝑞11

𝑞12 = ¬(𝑥1 ⊕ 𝑥2 ⊕ 𝑡0 ⊕ 𝑡2 ⊕ 𝑡3 ⊕ 𝑡4)

𝑞13 = 𝑥2 ⊕ 𝑥3

𝑡6 = 𝑞12 ∧ 𝑞13

𝑦0 = 𝑥1 ⊕ 𝑥3 ⊕ 𝑡2 ⊕ 𝑡3 ⊕ 𝑡5 ⊕ 𝑡6
𝑦1 = 𝑥0 ⊕ 𝑥4 ⊕ 𝑡1 ⊕ 𝑡2 ⊕ 𝑡3 ⊕ 𝑡4 ⊕ 𝑡5 ⊕ 𝑡6
𝑦2 = 𝑥1 ⊕ 𝑥2 ⊕ 𝑥4 ⊕ 𝑡1 ⊕ 𝑡3 ⊕ 𝑡4 ⊕ 𝑡5
𝑦3 = 𝑥0 ⊕ 𝑥2 ⊕ 𝑥3 ⊕ 𝑥4 ⊕ 𝑡3 ⊕ 𝑡4 ⊕ 𝑡5 ⊕ 𝑡6
𝑦4 = ¬(𝑥2 ⊕ 𝑡0 ⊕ 𝑡2 ⊕ 𝑡3 ⊕ 𝑡4 ⊕ 𝑡5 ⊕ 𝑡6)

40

3.4. Combining Criteria: Optimizing the PRIMATEs S-box

When the optimization method for multiplicative complexity is applied,
we find a solution with multiplicative complexity 7 as shown in listing 3.1.
It is not hard to see that there are a lot of redundant XOR operations in this
implementation. We distinguish between XOR operations before the nonlinear
gates (on 𝑥𝑖) and XOR operations after the nonlinear gates (on 𝑡𝑖). It is possible to
view them as two straight-line linear programs, where the first describes the
linear part of the S-box approached from the input and the second describes the
linear part approached from the S-box output.

The problem of finding the shortest linear program 𝐴𝑥 can be given by
𝑥 = (𝑥0 , 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4)⊺ and

𝐴 =

©­­«

𝑞0 1 0 0 1 0
𝑞1 0 1 0 0 0
𝑞2 0 1 0 1 0
𝑞3 1 0 1 0 0
𝑞4 1 1 0 0 1
𝑞5 1 0 1 1 0
𝑞6 1 0 1 1 1
𝑞7 0 1 1 0 1
𝑞8 1 1 1 1 1
𝑞9 0 0 1 0 0
𝑞10 1 0 0 1 1
𝑞11 1 0 0 0 1
𝑞12 0 1 1 0 0
𝑞13 0 0 1 1 0
𝑦0 0 1 0 1 0
𝑦1 1 0 0 0 1
𝑦2 0 1 1 0 1
𝑦3 1 0 1 1 1
𝑦4 0 0 1 0 0

ª®®¬

.

41

Chapter 3. S-boxes

The shortest linear straight-line program problem 𝐴′𝑥′ can be given by
𝑥′ = (𝑡0 , 𝑡1 , 𝑡2 , 𝑡3 , 𝑡4 , 𝑡5 , 𝑡6)⊺ and

𝐴′ =

©­­­­­­­­­­­­«

𝑞9 1 0 0 1 0 0 0
𝑞12 1 0 1 1 1 0 0
𝑦0 0 0 1 1 0 1 1
𝑦1 0 1 1 1 1 1 1
𝑦2 0 1 0 1 1 1 0
𝑦3 0 0 0 1 1 1 1
𝑦4 1 0 1 1 1 1 1

ª®®®®®®®®®®®®¬
.

We are able to find a minimal straight-line program computing 𝐴′𝑥′ using
SAT solvers. We use the method suggested by Fuhs and Schneider-Kamp [FS10]
to encode the SLP problem as a SAT instance in CNF. This yields a result that is
incorporated in our implementation of the PRIMATEs S-box. Finding a minimal
straight-line program computing 𝐴𝑥 turned out to be infeasible using SAT
solvers within a reasonable amount of time. Therefore, we apply the heuristic
approach as suggested by Boyar and Peralta [BP10]. This does provide us with
a short straight-line program. We combine both results and amend the original
PRIMATEs S-box implementation to get a more efficient implementation. We
are able to decrease the previous result of 58 XOR gates to only 31 XOR gates, as
shown in listing 3.2, where 𝑧𝑖 represent helper variables.

Tools. We provide tools to generate 𝐶′ in ANF for all discussed optimization
goals and to convert a SAT solver solution back to an S-box implementation. We
place those tools into the public domain. They and additional documentation
are available online at https://github.com/Ko-/sboxoptimization.

42

https://github.com/Ko-/sboxoptimization

3.5. Conclusion

Listing 3.2: PRIMATEs S-box with 31 XOR gates.

𝑧0 = 𝑥0 ⊕ 𝑥4

𝑧1 = 𝑥1 ⊕ 𝑥2

𝑧2 = 𝑥2 ⊕ 𝑥3

𝑞0 = 𝑥0 ⊕ 𝑥3

𝑡0 = 𝑞0 ∨ 𝑥1

𝑞2 = 𝑥1 ⊕ 𝑥3

𝑞3 = ¬(𝑥0 ⊕ 𝑥2)

𝑡1 = 𝑞2 ∨ 𝑞3

𝑞4 = 𝑥1 ⊕ 𝑧0

𝑞5 = 𝑥0 ⊕ 𝑧2

𝑡2 = 𝑞4 ∧ 𝑞5

𝑞6 = ¬(𝑥4 ⊕ 𝑞5)

𝑞7 = 𝑥4 ⊕ 𝑧1

𝑡3 = 𝑞6 ∨ 𝑞7

𝑞8 = 𝑞4 ⊕ 𝑧2

𝑧9 = 𝑡0 ⊕ 𝑡3
𝑞9 = 𝑥2 ⊕ 𝑧9

𝑡4 = 𝑞8 ∧ 𝑞9

𝑞10 = ¬(𝑥3 ⊕ 𝑧0)

𝑡5 = 𝑞10 ∧ 𝑧0

𝑞12 = ¬(𝑧1 ⊕ 𝑧9 ⊕ 𝑡2 ⊕ 𝑡4)

𝑡6 = 𝑞12 ∧ 𝑧2

𝑧3 = 𝑡5 ⊕ 𝑡6
𝑧4 = 𝑡3 ⊕ 𝑧3

𝑧5 = 𝑡2 ⊕ 𝑧4

𝑧6 = 𝑡1 ⊕ 𝑡6
𝑧7 = 𝑡4 ⊕ 𝑧5

𝑧8 = 𝑡1 ⊕ 𝑧7

𝑧10 = 𝑡0 ⊕ 𝑧7

𝑧11 = 𝑡4 ⊕ 𝑧4

𝑧12 = 𝑧6 ⊕ 𝑧11

𝑦0 = ¬(𝑞2 ⊕ 𝑧5)
𝑦1 = 𝑧0 ⊕ 𝑧8

𝑦2 = 𝑞7 ⊕ 𝑧12

𝑦3 = 𝑞6 ⊕ 𝑧11

𝑦4 = 𝑥2 ⊕ 𝑧10

3.5 Conclusion

SAT solvers can be used to find minimal implementations for small functions
such as S-boxes with respect to criteria as the multiplicative complexity, bitslice
gate complexity, gate complexity, and circuit-depth complexity. We have shown
how this can be done and how multiple criteria can be combined. However,
for 8-bit S-boxes and larger functions these methods quickly become infeasible.
One will then have to resort to approaches based on heuristics.

43

Chapter 4
MDS Matrices

As a second cryptographic building block, we consider maximum-distance separable

(MDS) matrices, which are commonly chosen as linear mixing layer in round functions

of iterated permutations and ciphers. This chapter argues that researchers should focus on

global optimization instead of local optimization and applies existing techniques from a

different line of research to achieve lower XOR counts. The original publication [KLSW17]

contained a few wrong numbers that were later discovered and corrected by co-authors

Thorsten Kranz and Friedrich Wiemer. Another wrong number for Toeplitz matrices

caused by a typo in code was pointed out by Mohsen Mousavi. In this chapter those

mistakes have been fixed. Another modification compared to the original publication is

that the appendix has become a regular section.

4.1 Introduction

Lightweight cryptography has been a major trend in symmetric cryptography for
the last years. While it is not always exactly clear what lightweight cryptography
actually is, the main goal can be summarized as very efficient cryptography.
Here, the meaning of efficiency ranges from small chip size to low latency and
low energy.

As part of this line of work, several researchers started to optimize the
construction of many parts of block ciphers, with a special focus on the linear
layers more recently and even more specifically the implementation of MDS
matrices. That is, linear layers with an optimal branch number.

The first line of work focused solely on minimizing the chip area of the
implementation. This started with the block cipher PRESENT [BKL+07] and
goes over to many more designs, such as LED [GPPR11] and the hash function

45

Chapter 4. MDS Matrices

PHOTON [GPP11], where in the latter MDS matrices were constructed that
are especially optimized for chip area by allowing a serialized implementation.
However, there seem to be only a few practical applications where a small chip
area is the only optimization goal and for those applications very good solutions
are already available by now.

Later, starting with FOAM [KPPY14], researchers focused on round-based
implementations with the goal of finding MDS constructions that minimize
the number of XOR operations needed for their implementation. Initially, the
number of XOR operations needed was bounded by the number of ones in the
binary representation of the matrix.

However, as the number of ones only gives an upper bound on the number of
required XORs, several papers started to deviate from this conceptually easier but
less accurate definition of XOR count and started to consider more efficient ways
of implementing MDS matrices. Considering an 𝑛 × 𝑛 MDS matrix over a finite
field F2𝑘 given as 𝑀 = (𝑚𝑖 , 𝑗) the aim was to choose the elements 𝑚𝑖 , 𝑗 in such a
way that implementing all of the multiplications 𝑥 ↦→ 𝑚𝑖 , 𝑗𝑥 in parallel becomes
as cheap as possible. In order to compute the matrix 𝑀 entirely, those partial
results have to be added together, for which an additional amount of XORs is
required. It became common to denote the former cost as the overhead and the
later cost, i. e., the cost of combining the partial results as a fixed, incompressible
part. A whole series of papers [BKL16; JPST17; LS16; LW16; LW17; SKOP15;
SS16a; SS16b; SS17; ZWS17] managed to reduce the overhead.

From a different viewpoint, what happened was that parts of the matrix,
namely the cost of multiplication with the𝑚𝑖 , 𝑗 , were extensively optimized, while
taking the overall part of combining the parts as a given. That is, researchers
have focused on local optimization instead of global optimization.

Indeed the task of globally optimizing is far from trivial, and thus the local
optimization is a good step forward.

Interestingly, trying to lower the cost of implementing the multiplication
with a relatively large, e. g., 32 × 32 binary matrix, is another extensively studied

46

4.1. Introduction

line of research. It is known that the problem is NP-hard [BMP08; BMP13]
and thus quickly renders infeasible for increasing matrix dimension. However,
a number of heuristic algorithms for finding the shortest linear straight-line
program, which exactly corresponds to minimizing the number of XORs, have
been proposed in the literature [BFP19; BMP08; BMP13; BP10; FS10; FS12;
Paa97; VSP17]. Those algorithms produce competitive results with a reasonable
running time for arbitrary binary matrices of dimension up to at least 32.

Thus, the natural next step in order to optimize the cost of implementing
MDS matrices is to combine those two approaches. This is exactly what we
are doing in our work. Our contribution, which we achieve by applying the
heuristic algorithms to find a short linear straight-line program to the case of
MDS matrices, is threefold.

First, we use several well-locally-optimized MDS matrices from the literature
and apply the known algorithms to all of them. This is conceptually easy, with
the main problem being the implementation of those algorithms. In order
to simplify this for follow-up works, we make our implementation publicly
available.

This simple application immediately leads to significant improvements.
For instance, we get an implementation of the AES MixColumn matrix that
outperformed all implementations in the literature at the time of the original
publication [KLSW17], i. e., we use 97 XORs while the best implementation before
used 103 XORs [JMPS17]. This result has later been improved and the best
result is currently at 92 XORs [Max19]. In the case of applying it to the other
constructions, we often get an implementation using fewer XOR operations than

what was considered fixed cost before. That is, when (artificially) computing it,
the overhead would actually be negative. This confirms our intuition that the
overhead was already very well optimized in previous work, such that now
optimizing globally is much more meaningful.

Second, we took a closer look at how the previous constructions compare
when being globally optimized. Interestingly, the previous best construction,

47

Chapter 4. MDS Matrices

i. e., the MDS matrix with smallest overhead, was most of the time not the one

with the fewest XORs. Thus, with respect to the global optimum, the natural
question was, which known construction actually performs best. In order to
analyze that, we performed extensive experimental computations to compare the
distribution of the optimized implementation cost for the various constructions.
The, somewhat disappointing, result is that all known constructions behave
basically the same. The one remarkable exception is the subfield construction
for MDS matrices, first introduced in Whirlwind [BNN+10].

Third, we looked at finding matrices that perform exceptionally well with
respect to the global optimization, i. e., which can be implemented with an
exceptionally low total number of XORs. Those results are summarized in
Table 4.1. Compared to previously known matrices, ours improve on all – with
the exception of one, where the best known matrix is the already published
matrix from [SS16b].

Table 4.1: Best known MDS matrices. Matrices in the lower half are involutory.

Type Previously best known New best known

GL(4, F2)4×4 58 [JPST17; SS16b] 36* Eq. (4.1) (Hadamard)
GL(8, F2)4×4 106 [LW16] 72 Eq. (4.2) (Subfield)
(F2[𝑥]/0x13)8×8 384 [SKOP15] 196† Eq. (4.3) (Cauchy)
GL(8, F2)8×8 640 [LS16] 392 Eq. (4.4) (Subfield)

(F2[𝑥]/0x13)4×4 63 [JPST17] 42* [SS16b]
GL(8, F2)4×4 126 [JPST17] 84 Eq. (4.5) (Subfield)
(F2[𝑥]/0x13)8×8 424 [SKOP15] 212† Eq. (4.6) (Vandermonde)
GL(8, F2)8×8 736 [JPST17] 424 Eq. (4.7) (Subfield)

* Computed with heuristic from [BMP13].
† Computed with heuristic from [Paa97].

48

4.2. Preliminaries

Finally, we like to point out two restrictions of our approach. First, we
do not try to minimize the amount of temporary registers needed for the
implementation. Second, in line with all previous constructions, we do not
minimize the circuit depth. The later restriction is out of scope of the current
work but certainly an interesting task for the future.

All our implementations are publicly available on GitHub at
https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices.

4.2 Preliminaries

Before getting into details about the XOR count and previous work, let us recall
some basic notations on finite fields [LN97], their representations [War94], and
on matrix constructions.

4.2.1 Basic Notations

F2𝑘 is the finite field with 2𝑘 elements, often also denoted as GF(2𝑘). Up to
isomorphism, every field with 2𝑘 elements is equal to the polynomial ring over
F2 modulo an irreducible polynomial 𝑞 of degree 𝑘: F2𝑘 � F2[𝑥]/𝑞. In favor of a
more compact notation, we stick to the common habit and write a polynomial
as its coefficient vector interpreted as a hexadecimal number, i. e., 𝑥4 + 𝑥 + 1
corresponds to 0x13.

It is well known that we can represent the elements in a finite field with
characteristic 2 as vectors with coefficients in F2. More precisely, there exists a
vector-space isomorphism Φ : F2𝑘 → F𝑘2 . Every multiplication by an element
𝛼 ∈ F2𝑘 can then be described by a left-multiplication with a matrix 𝑇𝛼 ∈ F𝑘×𝑘2 as
shown in the following diagram.

49

https://github.com/rub-hgi/shorter_linear_slps_for_mds_matrices

Chapter 4. MDS Matrices

F2𝑘 F2𝑘
·𝛼

F𝑘2 F𝑘2

Φ Φ−1

𝑇𝛼

𝑇𝛼 is usually called the multiplication matrix of the element 𝛼. Given an 𝑛 × 𝑛
matrix 𝑀 = (𝛼𝑖 , 𝑗) with 𝛼𝑖 , 𝑗 ∈ F2𝑘 for 1 ≤ 𝑖 , 𝑗 ≤ 𝑛, we define ℬ(𝑀) B (𝑇𝛼𝑖 , 𝑗) ⊆
GL(𝑘, F2)𝑛×𝑛 ⊆ (F𝑘×𝑘2)𝑛×𝑛 � F𝑛𝑘×𝑛𝑘2 . Its corresponding binary 𝑛𝑘 × 𝑛𝑘 matrix is
called the binary representation. Here, GL(𝑘, F2) denotes the general linear group,
that is the group of invertible matrices over F2 of dimension 𝑘 × 𝑘.

Given a matrix𝑀 and a vector 𝑢, the Hamming weights hw(𝑀) and hw(𝑢) are
defined as the number of nonzero entries in𝑀 and 𝑢, respectively. In the case of a
binary vector 𝑣 ∈ F𝑛𝑘2 , we define hw𝑘(𝑣) B hw(𝑣′), where 𝑣′ ∈ (F𝑘2)𝑛 is the vector
that has been constructed by partitioning 𝑣 into groups of 𝑘 bits. Furthermore, the
branch number of a matrix 𝑀 is defined as bn(𝑀) B min𝑢≠0{hw(𝑢)+hw(𝑀𝑢)}.
For a binary matrix 𝐵 ∈ F𝑛𝑘×𝑛𝑘2 , the branch number for 𝑘-bit words is defined as
bn𝑘(𝐵) B min𝑢∈F𝑛𝑘2 \{0}{hw𝑘(𝑢) + hw𝑘(𝑀𝑢)}.

In the design of block ciphers, MDS matrices play an important role.

Definition 1. An 𝑛 × 𝑛 matrix M is MDS if and only if bn(𝑀) = 𝑛 + 1.

It has been shown that a matrix is MDS if and only if all its square submatrices
are invertible [MS77, page 321, Theorem 8]. MDS matrices do not exist for every
choice of 𝑛, 𝑘. The exact parameters for which MDS matrices do or do not exist
are investigated in the context of the famous MDS conjecture which was initiated
in [Seg55]. For binary matrices, we need to modify Definition 1.

Definition 2. A binary matrix 𝐵 ∈ F𝑛𝑘×𝑛𝑘2 is MDS for 𝑘-bit words if and only if
bn𝑘(𝑀) = 𝑛 + 1.

50

4.2. Preliminaries

MDS matrices have a common application in linear layers of block ciphers,
due to the wide-trail strategy proposed for AES, see [Dae95; DR02]. We typically
deal with 𝑛 × 𝑛 MDS matrices over F2𝑘 respectively binary F𝑛𝑘×𝑛𝑘2 matrices that
are MDS for 𝑘-bit words where 𝑘 ∈ {4, 8} is the size of the S-box. In either case,
when we call a matrix MDS, the size of 𝑘 will always be clear from the context
when not explicitly mentioned.

It is easy to see that, if 𝑀 ∈ F𝑛×𝑛2𝑘 is MDS, then also ℬ(𝑀) is MDS for 𝑘-bit
words. On the other hand, there might also exist binary MDS matrices for 𝑘-bit
words that have no according representation over F2𝑘 .

Other, non-MDS matrices are also common in cipher designs. To name only
a few examples: PRESENT’s permutation matrix [BKL+07], lightweight imple-
mentable matrices from PRINCE [BCG+12], or PRIDE [ADK+14], or the recently
used almost-MDS matrices, e. g., in Midori [BBI+15], or QARMA [Ava17].

4.2.2 MDS Constructions

Cauchy and Vandermonde matrices are two famous constructions for building
MDS matrices. They have the advantage of being provably MDS.

However, as known from the MDS conjecture, for some parameter choices,
MDS matrices are unlikely to exist. E. g., we do not know how to construct MDS
matrices over F22 of dimension 4 × 4.

Definition 3 (Cauchy matrix). Given two disjoint sets of 𝑛 elements of a field
F2𝑘 , 𝐴 = {𝑎1 , . . . , 𝑎𝑛}, and 𝐵 = {𝑏1 , . . . , 𝑏𝑛} with 𝑎𝑖 − 𝑏 𝑗 ≠ 0. Then the following
matrix is a Cauchy matrix.

𝑀 = cauchy(𝑎1 , . . . , 𝑎𝑛 , 𝑏1 , . . . , 𝑏𝑛) B
©­­­­­«

1
𝑎1−𝑏1

1
𝑎1−𝑏2

· · · 1
𝑎1−𝑏𝑛

1
𝑎2−𝑏1

1
𝑎2−𝑏2

· · · 1
𝑎2−𝑏𝑛

...
. . .

...
1

𝑎𝑛−𝑏1
1

𝑎𝑛−𝑏2
· · · 1

𝑎𝑛−𝑏𝑛

ª®®®®®¬
Every Cauchy matrix is MDS, e. g., see [GR13, Lemma 1].

51

Chapter 4. MDS Matrices

Definition 4 (Vandermonde matrix). Given an 𝑛-tuple (𝑎1 , . . . , 𝑎𝑛) with 𝑎𝑖 ∈ F2𝑘 .
Then the following matrix is a Vandermonde matrix.

𝑀 = vandermonde(𝑎1 , . . . , 𝑎𝑛) B
©­­­­­«
𝑎0

1 𝑎1
1 · · · 𝑎𝑛−1

1
𝑎0

2 𝑎1
2 · · · 𝑎𝑛−1

2
...

. . .
...

𝑎0
𝑛 𝑎1

𝑛 · · · 𝑎𝑛−1
𝑛

ª®®®®®¬
Given two Vandermonde matrices 𝐴 and 𝐵 with fully distinct 𝑎𝑖 , 𝑏 𝑗 , then

the matrix 𝐴𝐵−1 is MDS, see [LF04, Theorem 2]. Furthermore, if 𝑎𝑖 = 𝑏𝑖 + Δ for
all 𝑖 and an arbitrary nonzero Δ, then the matrix 𝐴𝐵−1 is also involutory [LF04;
SDMO12].

4.2.3 Specially Structured Matrix Constructions

Other constructions, such as circulant, Hadamard, or Toeplitz, are not per se
MDS, but they have the advantage that they greatly reduce the search space by
restricting the number of submatrices that appear in the matrix. For circulant
matrices, this was already noted by Daemen, Knudsen, and Rĳmen [DKR97].

In order to generate a random MDS matrix with one of these constructions,
we can choose random elements for the matrix and then check for the MDS
condition. Because of many repeated submatrices, the probability to find an
MDS matrix is much higher then for a fully random matrix.

Definition 5 (Circulant matrices). A right circulant 𝑛 × 𝑛 matrix is defined by
the elements of its first row 𝑎1 , . . . , 𝑎𝑛 as

𝑀 = circr(𝑎1 , . . . , 𝑎𝑛) B
©­­­­­«
𝑎1 𝑎2 · · · 𝑎𝑛

𝑎𝑛 𝑎1 · · · 𝑎𝑛−1
...

. . .
...

𝑎2 · · · 𝑎𝑛 𝑎1

ª®®®®®¬
.

52

4.2. Preliminaries

A left circulant 𝑛 × 𝑛 matrix is analogously defined as

𝑀 = circℓ (𝑎1 , . . . , 𝑎𝑛) B
©­­­­­«
𝑎1 𝑎2 · · · 𝑎𝑛

𝑎2 𝑎3 · · · 𝑎1
...

. . .
...

𝑎𝑛 𝑎1 · · · 𝑎𝑛−1

ª®®®®®¬
.

While in the literature circulant matrices are almost always right circulant,
left circulant matrices are equally fine for cryptographic applications. The
often noted advantage of right circulant matrices, the ability to implement
the multiplication serialized and with shifts in order to save XORs, of course
also applies to left circulant matrices. Additionally, it is easy to see that
bn(circr(𝑎1 , . . . , 𝑎𝑛)) = bn(circℓ (𝑎1 , . . . , 𝑎𝑛)), since the matrices only differ in a
permutation of the rows. Thus, for cryptographic purposes, it does not matter if
a matrix is right circulant or left circulant and we will therefore simply talk about
circulant matrices in general. The common practice of restricting the matrix
entries to elements from a finite field comes with the problem that circulant
involutory MDS matrices over finite fields do not exist; see [JA09]. However, Li
and Wang [LW16] showed that this can be avoided by taking the matrix elements
from the general linear group.

Definition 6 (Hadamard matrix). A (finite field) Hadamard matrix 𝑀 over F2𝑘 is
of the form

𝑀 =

(
𝑀1 𝑀2

𝑀2 𝑀1

)
,

where𝑀1 and𝑀2 are either Hadamard matrices themselves or one-dimensional [Bea75].

The biggest advantage of Hadamard matrices is the possibility to construct
involutory matrices. If we choose the elements of our matrix such that the first
row sums to one, the resulting matrix is involutory; see [GR13].

53

Chapter 4. MDS Matrices

Definition 7 (Toeplitz matrix). An 𝑛 × 𝑛 Toeplitz matrix 𝑀 is defined by the
elements of its first row 𝑎1 , . . . , 𝑎𝑛 and its first column 𝑎1 , 𝑎𝑛+1 , . . . , 𝑎2𝑛−1 as

𝑀 = toep(𝑎1 , . . . , 𝑎𝑛 , 𝑎𝑛+1 , . . . , 𝑎2𝑛−1) B

©­­­­­­«

𝑎1 𝑎2 · · · 𝑎𝑛

𝑎𝑛+1 𝑎1
. . . 𝑎𝑛−1

...
. . .

. . .
...

𝑎2𝑛−1 𝑎2𝑛−2 · · · 𝑎1

ª®®®®®®¬
,

that is, every element defines one minor diagonal of the matrix.

To the best of our knowledge, Sarkar and Syed [SS16b] were the first to
scrutinize Toeplitz matrices in the context of XOR counts.

Finally, the subfield construction was first used to construct lightweight
linear layers in the Whirlwind hash function [BNN+10, Section 2.2.2] and later
used in [ADK+14; CYK+12; JPST17; KPPY14; SKOP15]. As its name suggests,
the subfield construction was originally defined only for matrices over finite
fields: a matrix with coefficients in F2𝑘 can be used to construct a matrix with
coefficients in F22𝑘 . Here, we use the natural extension to binary matrices.

Definition 8 (Subfield matrix). Given an 𝑛×𝑛 matrix 𝑀 with entries𝑚𝑖 , 𝑗 ∈ F𝑘×𝑘2 .
The subfield construction of 𝑀 is then an 𝑛 × 𝑛 matrix 𝑀′ with

𝑀′ = subfield(𝑀) B
(
𝑚′
𝑖 , 𝑗

)
,

where each 𝑚′
𝑖 , 𝑗

=

(
𝑚𝑖 , 𝑗 0

0 𝑚𝑖 , 𝑗

)
∈ F2𝑘×2𝑘

2 .

This definition is straightforward to extend for more than one copy of
the matrix 𝑀. The subfield construction has some very useful properties,
see [BNN+10; JPST17; KPPY14; SKOP15].

Lemma 1. For the subfield construction, the following properties hold:

1. Let 𝑀 be a matrix that can be implemented with 𝑚 XORs. Then the matrix

𝑀′ = subfield(𝑀) can be implemented with 2𝑚 XORs.

54

4.2. Preliminaries

2. Let 𝑀 be an MDS matrix for 𝑘-bit words. Then 𝑀′ = subfield(𝑀) is MDS for

2𝑘-bit words.

3. Let 𝑀 be an involutory matrix. Then 𝑀′ = subfield(𝑀) is also involutory.

Proof.

(1) Due to the special structure of the subfield construction, we can split the
multiplication by 𝑀′ into two multiplications by 𝑀, each on one half of
the input bits. Hence, the XOR count doubles.

(2) We want to show that hw2𝑘(𝑢) + hw2𝑘(𝑀′𝑢) ≥ 𝑛 + 1 for every nonzero 𝑢.
We split 𝑢 into two parts 𝑢1 and 𝑢2, each containing alternating halves
of the elements of 𝑢. As described in [KPPY14], the multiplication of 𝑀′

and 𝑢 is the same as the multiplication of the original matrix 𝑀 and each
of the two 𝑢𝑖 , if we combine the results according to our splitting. Let
𝑡 = hw2𝑘(𝑢) > 0. Then, we have 𝑡 ≥ hw𝑘(𝑢1) and 𝑡 ≥ hw𝑘(𝑢2). Without
loss of generality, let hw𝑘(𝑢1) > 0. Since 𝑀 is MDS for 𝑘-bit words, we
have hw𝑘(𝑀𝑢1) ≥ 𝑛 − 𝑡 + 1 which directly leads to hw2𝑘(𝑀′𝑢) ≥ 𝑛 − 𝑡 + 1.

(3) As in the above proof, this property is straightforward to see. We want to
show that 𝑀′𝑀′𝑢 = 𝑢 for any vector 𝑢. Again, we split 𝑢 into two parts,
𝑢1 and 𝑢2, each containing alternating halves of the elements of 𝑢. Now,
we need to show that 𝑀𝑀𝑢𝑖 = 𝑢𝑖 . This trivially holds, as 𝑀 is involutory.

□

With respect to cryptographic designs, this means the following: assume
we have a linear straight-line program with 𝑚 XORs for an (involutory) 𝑛 × 𝑛
MDS matrix and 𝑘-bit S-boxes. We can then easily construct a linear straight-line
program with 2𝑚 XORs for an (involutory) 𝑛 × 𝑛 MDS matrix and 2𝑘-bit S-boxes.

55

Chapter 4. MDS Matrices

4.3 Related Work

In 2014, [KPPY14] introduced the notion of XOR count as a metric to compare
the area-efficiency of matrix multiplications. Following that, there has been a
lot of work [BKL16; JPST17; LS16; LW16; LW17; SKOP15; SS16a; SS16b; SS17;
ZWS17] on finding MDS matrices that can be implemented with as few XOR
gates as possible in the round-based scenario.

In an independent line of research, the problem of implementing binary ma-
trix multiplications with as few XORs as possible was extensively studied [BFP19;
BMP08; BMP13; BP10; FS10; FS12; Paa97; VSP17].

In this section, we depict these two fields of research and show how they can
be combined.

4.3.1 Local Optimizations

Let us first recall the scenario. In a round-based implementation the matrix is
implemented as a fully unrolled circuit. Thus, in the XOR count metric, the goal
is to find a matrix that can be implemented with a circuit of as few (2-input) XOR
gates as possible. Of course, the matrix has to fulfill some criteria, typically it is
MDS. For finding matrices with a low XOR count, the question of how to create a
circuit for a given matrix must be answered.

The usual way for finding an implementation of 𝑛 × 𝑛 matrices over F2𝑘 was
introduced in [KPPY14]. As each of the 𝑛 output components of a matrix-vector
multiplication is computed as a sum over 𝑛 products, the implementation is
divided into two parts. First there are the single multiplications and then there
is the addition of the products. As F2𝑘 � F

𝑘
2 , an addition of two elements

from F𝑘2 requires 𝑘 XORs and thus adding up the products for all rows requires
𝑛(𝑛 − 1)𝑘 XORs in the case of an MDS matrix where every element is nonzero. If
one implements the matrix like this, these 𝑛(𝑛 − 1)𝑘 XORs are a fixed part that
cannot be changed. Accordingly, many papers [BKL16; JPST17; LS16; LW16;

56

4.3. Related Work

ZWS17] just state the number of XORs for the single field multiplications when
presenting results. The other costs are regarded as inevitable. The goal then
boils down to constructing matrices with elements for which multiplication
can be implemented with few XORs. Thus, the original goal of finding a global
implementation for the matrix is approached by locally looking at the single
matrix elements.

To count the number of XORs for implementing a single multiplication with
an element 𝛼 ∈ F2𝑘 , the multiplication matrix 𝑇𝛼 ∈ F𝑘×𝑘2 is considered. Such a
matrix can be implemented in a straightforward way with hw(𝑇𝛼) − 𝑘 XORs by
simply implementing every XOR of the output components. We call this the naive

implementation of a matrix and when talking about the naive XOR count of a
matrix, we mean the hw(𝑇𝛼) − 𝑘 XORs required for the naive implementation.
In [JPST17], this is called d-XOR. It is the easiest and most frequently used
method of counting XORs. Of course, in the same way we can also count the XORs
of other matrices over F𝑘×𝑘2 , i. e., also matrices that were not originally defined
over finite fields.

For improving the XOR count of the single multiplications, two methods
have been introduced. First, if the matrix is defined over some finite field, one
can consider different field representations that lead to different multiplication
matrices with potentially different Hamming weights, see [BKL16; SKOP15;
SS16a]. Second, by reusing intermediate results, a 𝑘 × 𝑘 binary matrix might be
implemented with less than hw(𝑀) − 𝑘 XORs, see [BKL16; JPST17]. In [JPST17],
this is called s-XOR. The according definitions from [JPST17] and [BKL16] require
that all operations must be carried out on the input registers. That is, in contrast
to the naive XOR count, no temporary registers are allowed. However, as we
consider round-based hardware implementations, there is no need to avoid
temporary registers since these are merely wires between gates.

Nowadays, the XOR count of implementations is mainly dominated by the
𝑛(𝑛 − 1)𝑘 XORs for putting together the locally optimized multiplications. Lastly,
we seem to hit a threshold and new results often improve existing results only by

57

Chapter 4. MDS Matrices

very few XORs. The next natural step is to shift the focus from local optimization
of the single elements to the global optimization of the whole matrix. This was
also formulated as future work in [JPST17]. As described in Section 4.2, we can
use the binary representation to write an 𝑛×𝑛 matrix over F2𝑘 as a binary 𝑛𝑘×𝑛𝑘
matrix. First we note that the naive XOR count of the binary representation is
exactly the naive XOR count of implementing each element multiplication and
subsequently adding the results. However, if we consider the optimization
technique of reusing intermediate results for the whole 𝑛𝑘 × 𝑛𝑘 matrix, there are
many more degrees of freedom. For the MixColumn matrix there already exists
some work that goes beyond local optimization. An implementation with 108
XORs has been presented in [BBR16a; BBR16b; SMTM01] and an implementation
with 103 XORs in [JMPS17]. A first step to a global optimization algorithm was
taken in [ZWZZ16]. However, their heuristic did not yield very good results
and they finally had to go back to optimizing submatrices.

Interestingly, much better algorithms for exactly this problem are already
known from a different line of research.

4.3.2 Global Optimizations

Implementing binary matrices with as few XOR operations as possible is also
known as the problem of finding the shortest linear straight-line program [BMP13;
FS10] over the finite field with two elements. Although this problem is NP-
hard [BMP08; BMP13], attempts have been made to find exact solutions for the
minimum number of XORs. Fuhs and Schneider-Kamp [FS10; FS12] suggested to
reduce the problem to satisfiability of Boolean logic. They presented a general
encoding scheme for deciding if a matrix can be implemented with a certain
number of XORs. Now, for finding the optimal implementation, they repeatedly
use SAT solvers for a decreasing number of XORs. Then, when they know that
a matrix can be implemented with ℓ XORs, but cannot be implemented with
ℓ − 1 XORs, they are able to present ℓ as the optimal XOR count. They used this

58

4.3. Related Work

technique to search for the minimum number of XORs necessary to compute a
binary matrix of size 21 × 8, which is the first linear part of the AES S-box, when
it is decomposed into two linear parts and a minimal nonlinear core. While it
worked to find a solution with 23 XORs and to show that no solution with 20 XORs
exists, it turned out to be infeasible to prove that a solution with 22 XORs does
not exist and that 23 is therefore the minimum. In general, this approach quickly
becomes infeasible for larger matrices. In Chapter 3 we applied it successfully
to a small 7 × 7 matrix, but we did not manage to find a provably minimal
solution with a specific matrix of size 19×5. However, there do exist heuristics to
efficiently find short linear straight-line programs also for larger binary matrices.

Back in 1997, Paar [Paa97] studied how to optimize the arithmetic used by
Reed-Solomon encoders. Essentially, this boils down to reducing the number
of XORs that are necessary for a constant multiplier over the field F2𝑘 . Paar
described two algorithms that find a local optimum. Intuitively, the idea of
the algorithms is to iteratively eliminate common subexpressions. Let 𝑇𝛼 be the
multiplication matrix, to be applied to a variable 𝑥 = (𝑥1 , . . . , 𝑥𝑘) ∈ F𝑘2 . The first
algorithm for computing 𝑇𝛼𝑥, denoted Paar1 in the rest of this work, finds a pair
(𝑖 , 𝑗), with 𝑖 ≠ 𝑗, where the bitwise AND between columns 𝑖 and 𝑗 of 𝑇𝛼 has the
highest Hamming weight. In other words, it finds a pair (𝑥𝑖 , 𝑥 𝑗) that occurs most
frequently as subexpression in the output bits of 𝑇𝛼𝑥. The XOR between those is
then computed, and 𝑀 is updated accordingly, with 𝑥𝑖 + 𝑥 𝑗 as newly available
variable. This is repeated until there are no common subexpressions left.

The second algorithm, denoted Paar2, is similar, but differs when multiple
pairs are equally common. Instead of just taking the first pair, it recursively
tries all of them. The algorithm is therefore much slower, but can yield slightly
improved results. Compared to the naive XOR count, Paar noted an average
reduction in the number of XORs by 17.5% for matrices over F24 and by 40% for
matrices over F28 .

In 2009, Bernstein [Ber09] presented an algorithm for efficiently implementing
linear maps modulo 2. Based on this and on [Paa97], a new algorithm was

59

Chapter 4. MDS Matrices

presented in [BC14]. However, the algorithms from [BC14; Ber09] have a different
framework in mind and yield a higher number of XORs compared to [Paa97].

Paar’s algorithms lead to so-called cancellation-free programs. This means that
for every XOR operation 𝑢 + 𝑣, none of the input bit variables 𝑥𝑖 occurs in both 𝑢
and 𝑣. Thus, the possibility that two variables cancel each other out is never
taken into consideration, while this may in fact yield a more efficient solution
in terms of the total number of XORs. In 2008, Boyar, Matthews, and Peralta
[BMP08] showed that cancellation-free techniques can often not be expected to
yield optimal solutions for nontrivial inputs. They also showed that, even under
the restriction to cancellation-free programs, the problem of finding an optimal
program is NP-complete.

Around 2010, Boyar and Peralta [BP10] came up with a heuristic that is not
cancellation-free and that improved on Paar’s algorithms in most scenarios.
Their idea was to keep track of a distance vector that contains, for each targeted
expression of an output bit, the minimum number of additions of the already
computed intermediate values that are necessary to obtain that target. To decide
which values will be added, the pair that minimizes the sum of new distances
is picked. If there is a tie, the pair that maximizes the Euclidean norm of the
new distances is chosen. Additionally, if the addition of two values immediately
leads to a targeted output, this can always be done without searching further.
This algorithm works very well in practice, although it is slower compared to
Paar1.

Next to using the Euclidean norm as tie breaker, they also experimented
with alternative criteria. For example, choosing the pair that maximizes the
Euclidean norm minus the largest distance, or choosing the pair that maximizes
the Euclidean norm minus the difference between the two largest distances.
The results were then actually very similar. Another tie-breaking method is
to flip a coin and choose a pair randomly. The algorithm is now no longer
deterministic and can be run multiple times. The lowest result can then be used.
This performed slightly better, but of course processing again takes longer.

60

4.4. Results

The results of [BMP08] and [BP10] were later improved and published
in [BMP13]. In early 2017, Visconti, Schiavo, and Peralta [VSP17] explored the
special case where the binary matrix is dense. They improved the heuristic on
average for dense matrices by first computing a common path, an intermediate
value that contains most variables. The original algorithm is then run starting
from this common path. At BFA 2017, Boyar, Find, and Peralta [BFP19] presented
an improvement that simultaneously reduces the number of XORs and the depth
of the resulting circuit. We refer to this family of heuristics [BFP19; BMP08;
BMP13; BP10; VSP17] as the BP heuristics.

4.4 Results

Using the techniques described above, we now give optimized XOR counts and
implementations of matrices described in the literature. After that, we analyze
the statistical behavior of matrix constructions. Finally we summarize the to
date best known matrices.

4.4.1 Improved Implementations of Matrices

Using the heuristic methods that are described in the previous section, we
can easily and significantly reduce the XOR counts for many matrices that have
been used in the literature. The running times for the optimizations are in the
range of seconds to minutes. All corresponding implementations are available
in the GitHub repository. Table 4.2 and Table 4.3 list results for matrices that
have been suggested in previous works where it was an explicit goal to find a
lightweight MDS matrix. While the constructions themselves will be compared
in Section 4.4.2, this table deals with the suggested instances.

61

Chapter 4. MDS Matrices

Table 4.2: Comparison of 4 × 4 MDS matrices over GL(4, F2) and GL(8, F2).

Matrix Naive Literature Paar1 Paar2 BP

4 × 4 matrices over GL(4, F2)

[SKOP15] (Hadamard) 68 20 + 48 50 48 48
[LS16] (Circulant) 60 12 + 48 49 46 44
[LW16] (Circulant)* 60 12 + 48 48 47 44
[BKL16] (Circulant)† 64 12 + 48 48 47 42
[SS16b] (Toeplitz) 58 10 + 48 46 45 43
[JPST17] 61 10 + 48 48 47 43

[SKOP15] (Hadam., Invol.) 72 24 + 48 52 48 48
[LW16] (Hadam., Invol.) 72 24 + 48 51 48 48
[SS16b] (Involutory) 64 16 + 48 50 48 42
[JPST17] (Involutory) 68 15 + 48 51 47 47

4 × 4 matrices over GL(8, F2)

[SKOP15] (Subfield) 136 40 + 96 100 98 100
[LS16] (Circulant) 128 28 + 96‡ 116 116 112
[LW16] 106 10 + 96 102 102 102
[BKL16] (Circulant) 136 24 + 96 116 112 110
[SS16b] (Toeplitz) 123 24 + 96‡ 110 108 107
[JPST17] (Subfield) 122 20 + 96 96 95 86

[SKOP15] (Subf., Invol.) 144 40 + 96‡ 104 101 100
[LW16] (Hadam., Invol.) 136 40 + 96 101 97 91
[LW16] (Circ., Invol.) 132 36 + 96 104 104 97
[SS16b] (Involutory) 160 64 + 96 110 109 100
[JPST17] (Subf., Invol.) 136 30 + 96 102 100 91

* We chose the matrix presented as an example in the paper.
† We chose the canonical candidate from its class of MDS matrices.
‡ Reported by [JPST17].62

4.4. Results

A number of issues arise that are worth highlighting. First of all, it should
be noted that without any exception, the XOR count for every matrix could be
reduced with little effort. Second, it turns out that there are many cases where
the 𝑛(𝑛 − 1)𝑘 XORs for summing the products for all rows is not even a correct
lower bound. In fact, all the 4 × 4 matrices over GL(4, F2) that we studied can be
implemented in at most 48 XORs.

What may be more interesting, is whether the XOR count as it was used
previously is a good predictor for the actual implementation cost as given by
the heuristic methods. Here we see some differences. For example, [LW16]’s
circulant 4× 4 matrices over GL(8, F2) first compared very favorably, but we now
find that the subfield matrix of [JPST17] requires fewer XORs.

Table 4.3: Comparison of 8 × 8 MDS matrices over GL(4, F2) and GL(8, F2).

Matrix Naive Literature Paar1 Paar2 BP

8 × 8 matrices over GL(4, F2)

[SKOP15] (Hadamard) 432 160 + 224* 210 209 194
[SS17] (Toeplitz) 394 170 + 224 205 205 201

[SKOP15] (Hadam., Invol.) 512 200 + 224* 222 222 217

8 × 8 matrices over GL(8, F2)

[SKOP15] (Hadamard) 768 256 + 448* 474 — 467
[LS16] (Circulant) 688 192 + 448* 464 — 447
[BKL16] (Circulant) 784 208 + 448* 506 — 498
[SS17] (Toeplitz) 680 232 + 448 447 — 438

[SKOP15] (Hadam., Invol.) 816 320 + 448* 430 — 428
[JPST17] (Hadam., Invol.) 1152 288 + 448 620 — 599

* Reported by [JPST17].

63

Chapter 4. MDS Matrices

Regarding involutory matrices, it was typically the case that there was an
extra cost involved to meet this additional criterion. However, the heuristics
sometimes find implementations with even fewer XORs than the non-involutory
matrix that was suggested. See for example the matrices of [SS16b] in Table 4.2.

Table 4.4: MDS matrices used in ciphers or hash functions.

Cipher Type Naive Literature Paar1 Paar2 BP

AES [DR02]* (F2[𝑥]/0x11b)4×4 152 7 + 96† 108 108 97
ANUBIS [BR00a] (F2[𝑥]/0x11d)4×4 184 80 + 96‡ 121 121 106
CLEFIA M0 [SSA+07] (F2[𝑥]/0x11d)4×4 184 80 + 96‡ 121 121 106
CLEFIA M1 [SSA+07] (F2[𝑥]/0x11d)4×4 208 — 121 121 111
FOX mu4 [JV04] (F2[𝑥]/0x11b)4×4 219 — 144 143 137
Twofish [SKW+98] (F2[𝑥]/0x169)4×4 327 — 151 149 129

FOX mu8 [JV04] (F2[𝑥]/0x11b)8×8 1257 — 611 — 594
Grøstl [GKM+] (F2[𝑥]/0x11b)8×8 1112 504 + 448‡ 493 — 475
Khazad [BR00b] (F2[𝑥]/0x11d)8×8 1232 584 + 448‡ 488 — 507
Whirlpool [BR00c]§ (F2[𝑥]/0x11d)8×8 840 304 + 448‡ 481 — 465

Joltik [JNP15] (F2[𝑥]/0x13)4×4 72 20 + 48‡ 52 48 48
Small scale AES [CMR05] (F2[𝑥]/0x13)4×4 72 — 54 54 47

Whirlwind M0 [BNN+10] (F2[𝑥]/0x13)8×8 488 168 + 224‡ 218 218 212
Whirlwind M1 [BNN+10] (F2[𝑥]/0x13)8×8 536 184 + 224‡ 246 244 235

* Also used in other primitives, e. g., its predecessor Square [DKR97] and
MUGI [WFY+02].

† Reported by [JMPS17].
‡ Reported by [JPST17].
§ Also used in Maelstrom-0 [FBR06].

64

4.4. Results

Aside from these matrices, we also looked at (MDS) matrices that are used by
various ciphers and hash functions. Table 4.4 and Table 4.5 list their results. Not
all MDS matrices that are used in ciphers are incorporated here. In particular,
LED [GPPR11], PHOTON [GPP11], and PRIMATEs [ABB+14] use efficient
serialized MDS matrices. Comparing these to our “unrolled” implementations
would be somewhat unfair.

Table 4.5: Non-MDS matrices used in ciphers or hash functions.

Cipher Type Naive Literature Paar1 Paar2 BP

QARMA-128 [Ava17] (F2[𝑥]/0x101)4×4 64 — 48 48 48

ARIA [KKP+04] (F2)128×128 768 480* 416 — —
Midori [BBI+15]† (F24)4×4 32 — 24 24 24
PRINCE M̂0, M̂1 [BCG+12] (F2)16×16 32 — 24 24 24
PRIDE L0–L3 [ADK+14] (F2)16×16 32 — 24 24 24
QARMA-64 [Ava17] (F2[𝑥]/0x11)4×4 32 — 24 24 24
SKINNY-64 [BJK+16] (F24)4×4 16 12 12 12 12

* Reported by [BCL+04].
† Also used in other ciphers, e. g., MANTIS [BJK+16] and Fides [BBK+13].

The implementation of the MDS matrix used in AES with 97 XORs is, to the
best of our knowledge, the most efficient implementation so far and improves on
the previous implementation of 103 XORs, reported by [JMPS17]. As a side note,
cancellations do occur in this implementation, we thus conjecture that such a
low XOR count is not possible with cancellation-free programs.

4.4.2 Statistical Analysis

Several constructions for building MDS matrices are known. However, it is not
clear which one is the best when we want to construct matrices with a low XOR

65

Chapter 4. MDS Matrices

count. In this section, we present experimental results on different constructions
and draw conclusions for the designer. We also examine the correlation between
naive and heuristically improved XOR counts. When designing MDS matrices
with a low XOR count, we are faced with two major questions. First, which
construction is preferable? Our intuition in this case is that a better construction
has better statistical properties compared to an inferior construction. We are
aware that the statistical behavior of a construction might not be very important
for a designer who only looks for a single, very good instance. Nevertheless
we use this as a first benchmark. Second, is it a good approach to choose the
matrices as sparse as possible? To compare the listed constructions, we construct
random instances of each and then analyze them with statistical means.

Building Cauchy and Vandermonde matrices is straightforward as we only
need to choose the defining elements randomly from the underlying field. For
the other constructions, we use the following backtracking method to build
random MDS constructions of dimension 4×4. Choose the new random elements
from GL(𝑘, F2) that are needed for the matrix construction in a step-by-step
manner. In each step, construct all new square submatrices. If any of these is
not invertible, discard the chosen element and try a new one. In the case that no
more elements are left, go one step back and replace that element with a new
one, then again check the according square submatrices, and so on. Eventually,
we end up with an MDS matrix because we iteratively checked that every
square submatrix is invertible. The method is also trivially derandomizable,
by not choosing the elements randomly, but simply enumerating them in any
determined order.

Apart from applying this method to the above mentioned constructions, we
can also use it to construct an arbitrary, i. e., unstructured, matrix that is simply
defined by its 16 elements. This approach was already described in [JPST17].

In this manner, we generated 1000 matrices for each construction and
computed the distributions for the naive XOR count, the optimized XOR count
of Paar1, and BP. Table 4.6 lists the statistical parameters of the resulting

66

4.4. Results

distributions and Fig. 4.1 depicts them (the sample size 𝑁 is the same for
Table 4.6 and Figs. 4.1 through 4.5).

Table 4.6: Distributions for differently optimized XOR counts. By 𝑁 we denote
the sample size, 𝜇 is the mean, and 𝜎2 the variance.

Construction 𝑁
Naive Paar1 BP

𝜇 𝜎2 𝜇 𝜎2 𝜇 𝜎2

4 × 4 matrices over GL(4, F2)

Cauchy 1 000 120.7 77.3 62.9 11.0 53.1 4.0
Circulant 1 000 111.8 117.1 60.4 19.2 52.1 7.1
Hadamard 1 000 117.5 99.6 60.2 17.8 52.4 6.9
Toeplitz 1 000 112.8 39.9 59.9 7.4 51.3 3.9
Vandermonde 1 000 120.6 87.6 62.2 8.1 52.9 3.1

Enumerated 4 × 4 matrices over GL(4, F2)

Circulant 1 000 82.9 53.0 54.9 13.5 50.1 6.7
Hadamard 1 000 102.1 76.0 56.7 20.6 50.6 8.0
Toeplitz 1 000 86.1 43.9 55.3 8.3 49.4 3.9
Arbitrary 1 000 80.5 8.3 49.7 3.2 44.5 1.8

4 × 4 matrices over GL(8, F2)

Cauchy 1 000 454.1 467.2 215.1 39.6 — —
Vandermonde 1 000 487.3 597.4 220.2 44.3 — —

4 × 4 subfield matrices over GL(4, F2)

Cauchy 1 000 241.1 312.1 125.8 44.2 — —
Vandermonde 1 000 240.6 452.8 121.8 47.1 — —

67

Chapter 4. MDS Matrices

60 70 80 90 100 110 120 130 140 150 160 170 180
Naive XOR count

Cauchy
Circulant

Circulant (enum.)
Hadamard

Hadamard (enum.)
Toeplitz

Toeplitz (enum.)
Vandermonde

Arbitrary (enum.)

35 40 45 50 55 60 65 70 75
Paar1 XOR count

35 40 45 50 55 60 65 70 75
BP XOR count

Figure 4.1: XOR count distributions for 4 × 4 MDS matrices over GL(4, F2).
68

4.4. Results

The most obvious characteristics of the statistical distributions are that the
means 𝜇 do not differ much for all randomized constructions. The variances
𝜎2 on the contrary differ much more. This is most noticeable for the naive XOR
count, while the differences get much smaller when the XOR count is optimized
with the Paar1 or BP heuristic. One might think that the construction with
the lowest optimized average XOR count, which is for matrices over GL(4, F2)
the arbitrary construction with enumerated elements, yields the best results.
However, the best matrix we could find for these dimension was a Hadamard
matrix. An explanation for this might be the higher variance that leads to some
particularly bad and some particularly good results.

The graphs in Fig. 4.1 convey a similar hypothesis. Looking only at the naive
XOR count, we can notice some differences. For example circulant matrices seem
to give better results than, e. g., Hadamard matrices. Additionally, the naive
XOR count increases step-wise as not every possible count occurs. However, the
distributions get smoother and more similar when optimizing the XOR count.

We conclude that all constructions give similarly good matrices when we are
searching for the matrix with the lowest XOR count, with one important exception.
For randomly generated matrices the XOR count increases by a factor of four, if
we double the parameter 𝑘. Table 4.6 covers this for Cauchy and Vandermonde
matrices. We do not compute the statistical properties for Circulant, Hadamard,
and Toeplitz matrices with elements of GL(8, F2), as the probability to find a
random MDS instance for these constructions is quite low. Thus, generating
enough instances for a meaningful statistical comparison is computationally
tough and – as we deduce from a much smaller sample size – the statistical
behavior looks very similar to that of the Cauchy and Vandermonde matrices.
Instead, as was already mentioned in Lemma 1, the subfield construction has a
much more interesting behavior. It simply doubles the XOR count. The lower
half of Table 4.6 confirms this behavior.

Thus, when it is computationally infeasible to exhaustively search through
all possible matrices, it seems to be a very good strategy to use the subfield

69

Chapter 4. MDS Matrices

construction with the best known results from smaller dimensions. This
conclusion is confirmed by the fact that our best results for matrices over
GL(8, F2) are always subfield constructions based on matrices over GL(4, F2).

Next, we want to approach the question if choosing MDS matrices with
entries with low Hamming weight is a good approach to finding low-XOR-
count implementations. For each MDS-matrix family and for each optimization
algorithm, we plot the naive XOR count against the optimized one.

In Figs. 4.2 through 4.5 one can see that several options can occur. While there
is a general tendency of higher naive XOR counts leading to higher optimized XOR
counts, the contrary is also possible. For example, there are matrices which have
a low naive XOR count (left in the figure), while still having a somewhat high
optimized XOR count (top part of the figure). However, there are also matrices
where a higher naive XOR count results in a much better optimized XOR count.
The consequence is that we cannot restrict ourselves to very sparse matrices
when searching for the best XOR count, but also have to take more dense matrices
into account. A possible explanation for this behavior is that the heuristics have
more possibilities for optimizations, when the matrix is not sparse.

4.4.3 Best results

Let us conclude by specifying the currently best MDS matrices. The notation
𝑀𝑛,𝑘 denotes an 𝑛 × 𝑛 matrix with entries from GL(𝑘, F2), an involutory matrix
is labeled with the superscript 𝑖. Table 4.1 covers non-involutory and involutory
matrices of dimension 4 × 4 and 8 × 8 over GL(4, F2) and GL(8, F2). 𝑀8,4 and
𝑀 𝑖

8,4 are defined over F2[𝑥]/0x13.
The matrices mentioned there are the following:

𝑀4,4 = hadamard(
(0 0 0 1

0 0 1 0
0 1 0 0
1 0 0 0

)
,

(0 0 1 1
1 0 0 1
1 1 0 0
0 1 0 0

)
,

(1 1 0 1
1 1 0 0
0 1 0 1
0 0 1 0

)
,

(1 1 0 0
0 1 0 1
1 0 1 1
0 0 0 1

)
) (4.1)

𝑀4,8 = subfield(𝑀4,4) (4.2)

70

4.4. Results

80 100 120 140 160

50

60

70

(a) Cauchy

80 100 120 140 160

50

60

70

(b) Circulant

80 100 120 140 160

50

60

70

(c) Hadamard

80 100 120 140 160

50

60

70

(d) Toeplitz

80 100 120 140 160

50

60

70

(e) Vandermonde

Figure 4.2: Correlations between naive (x-axis) and Paar1 (y-axis) XOR counts
for randomly generated matrices.

𝑀8,4 = cauchy

(
𝑥3+𝑥2 , 𝑥3 , 𝑥3+𝑥+1, 𝑥+1, 0, 𝑥3+𝑥2+𝑥+1, 𝑥2 , 𝑥2+𝑥+1,

1, 𝑥2+1, 𝑥3+𝑥2+𝑥, 𝑥3+1, 𝑥3+𝑥2+1, 𝑥2+𝑥, 𝑥3+𝑥, 𝑥

)
(4.3)

𝑀8,8 = subfield(𝑀8,4) (4.4)

𝑀 𝑖
4,8 is the subfield construction applied to [SS16b, Example 3] (4.5)

𝑀 𝑖
8,4 = vandermonde

(
𝑥3+𝑥+1, 𝑥+1, 𝑥3+𝑥2+𝑥, 𝑥3+𝑥2+1, 𝑥3+1, 𝑥3 , 0, 𝑥3+𝑥

𝑥2+𝑥+1, 𝑥3+𝑥2+𝑥+1, 𝑥, 1, 𝑥2+1, 𝑥2 , 𝑥3+𝑥2 , 𝑥2+𝑥

)
(4.6)

𝑀 𝑖
8,8 = subfield(𝑀 𝑖

8,4) (4.7)

All these matrices improve over the previously known matrices, except for
the involutory matrix from [SS16b] of dimension 4 × 4 over GL(4, F2). 𝑀4,4 was

71

Chapter 4. MDS Matrices

40 60 80 100 120
40

50

60

70

(a) Circulant (enum.)

40 60 80 100 120
40

50

60

70

(b) Hadamard (enum.)

40 60 80 100 120
40

50

60

70

(c) Toeplitz (enum.)

40 60 80 100 120
40

50

60

70

(d) Arbitrary (enum.)

Figure 4.3: Correlations between naive (x-axis) and Paar1 (y-axis) XOR counts
for enumerated matrices.

found after enumerating a few thousand Hadamard matrices, while 𝑀8,4 and
𝑀 𝑖

8,4 are randomly generated and were found after a few seconds. Every best
matrix over GL(8, F2) uses the subfield construction.

With these results we want to highlight that, when applying global opti-
mizations, it is quite easy to improve (almost) all currently best known results.
We would like to mention that our results should not be misunderstood as an
attempt to construct matrices that cannot be improved. Another point that was
not covered in this work is the depth of the critical path as considered in [BFP19].

72

4.4. Results

80 100 120 140 160
40

50

60

(a) Cauchy

80 100 120 140 160
40

50

60

(b) Circulant

80 100 120 140 160
40

50

60

(c) Hadamard

80 100 120 140 160
40

50

60

(d) Toeplitz

80 100 120 140 160
40

50

60

(e) Vandermonde

Figure 4.4: Correlations between naive (x-axis) and BP (y-axis) XOR counts for
randomly generated matrices.

73

Chapter 4. MDS Matrices

80 100 120

40

50

60

(a) Circulant (enum.)

80 100 120

40

50

60

(b) Hadamard (enum.)

80 100 120

40

50

60

(c) Toeplitz (enum.)

80 100 120

40

50

60

(d) Arbitrary (enum.)

Figure 4.5: Correlations between naive (x-axis) and BP (y-axis) XOR counts for
enumerated matrices.

74

Chapter 5
Column-Parity Mixers

As a third and final cryptographic building block, we formalize column-parity mixers

and study their cryptographic properties. They are suitable as an alternative to MDS

matrices for linear mixing layers in round functions of iterated permutations and ciphers.

We then outline a full design strategy that incorporates column-parity mixers. In

comparison to the original publication [SD18], some appendices have been removed and

some have been merged into the regular text.

5.1 Introduction

In recent years, there has been a lot of research on lightweight cryptography.
A need is perceived for cryptographic primitives that can be implemented
on resource-constrained platforms, such as devices in the Internet of Things.
Historically the most important primitives were block ciphers, but since a few
years cryptographic permutations gain in popularity. Most of these ciphers
consist of the repeated application of an invertible round function, where
in the case of block ciphers each round takes a round key. As inspired by
DES [DES77] and later AES [DR02], often the round function consists of a
number of separate layers, each with a particular task. There is typically a
nonlinear S-box layer and a linear diffusion layer. In some modern ciphers, this
linear layer consists of a sub-layer that mixes the bits (or bytes) and typically has
a high branch number [DR02], and a transposition sub-layer that moves bits (or
bytes around). In AES, the mixing layer MixColumns consists of the parallel
application of a maximum-distance separable (MDS) mapping on each of the
4-byte columns. This mapping has branch number 5, the maximum attainable
value. In combination with the transposition layer ShiftRows, this allows to

75

Chapter 5. Column-Parity Mixers

give a simple proof for a strong upper bound on the differential probability of
4-round differential trails (characteristics) and the correlation of 4-round linear
trails.

With lightweight cryptography in mind, there has been a substantial amount
of publications in the last few years on constructions for lightweight MDS
mappings, see e. g., [BKL16; GPP11; LS16; LW16]. This has led to a better
understanding of the implementation cost of such mappings in relation to their
dimensions: the number and size of elements (e. g., 4 bytes in MixColumns). We
can now build block ciphers and permutations with the same design philosophy
as AES, using more lightweight components and leading to bounds that are
easy to prove.

Another cipher where the designers emphasize the mixing layer is Keccak- 𝑓 ,
the permutation underlying Keccak and the SHA-3 functions [BDPV11b; NIS15b].
Its mixing layer 𝜃 does not operate on separate subblocks as MixColumns does,
and it has a branch number of 4. However, despite the fact that it requires
only 2 XOR operations per bit, in combination with the other layers of the round
function it appears to have quite good diffusion. In particular, [MDA17] reports
on computer-aided proofs for quite promising upper bounds for the differential
probability of differential trails. It appears that 𝜃-like mappings would be a
good candidate for a linear mixing layer, or in general for a mixing layer with a
good trade-off between implementation cost and mixing power.

There is a remarkable difference between AES and Keccak- 𝑓 . In the former,
all step mappings are defined in terms of operations on bytes and in the latter
each step mapping treats groupings of bits along different axes. The AES design
approach has received quite some following and it can be called byte-oriented
(although there are also ciphers where these units are 4-bit nibbles or even 5-bit
units). We call the design approach of Keccak- 𝑓 bit-oriented. The byte-oriented
design approach has the advantage that one can easily prove bounds. We believe
that 𝜃-like mappings are suitable for both design approaches.

76

5.1. Introduction

5.1.1 Our Contributions

In this chapter we present a generalization of the 𝜃 mixing layer in Keccak- 𝑓
called column-parity mixers (CPMs). CPMs operate on two-dimensional arrays
and in their definition parities computed over the columns play a central role,
hence the name column-parity mixers. In Section 5.2 we provide an elegant
description using matrix arithmetic, allowing us to easily derive algebraic,
diffusion, and mask-propagation properties. We also show that column-parity
mixers operating on states with an even number of rows have quite different
properties from those operating on an odd number of rows.

The former are involutions and are ideally suited for block ciphers and
permutations that need to have an efficient inverse. Coincidentally, those are the
ones that are typically required to have a permutation width (or block size) that
is a power of two, and this is nicely compatible with an even number of rows.
An example is disk encryption where the size of a disk sector is a power of two.

The latter may have an inverse with high implementation cost but also
with very interesting diffusion properties (see Section 5.4). They are suited for
permutations used in MACs or in stream encryption, or in conjunction with
authenticated encryption modes that do not require the inverse such as the
sponge and duplex constructions [BDPV11a], where the permutation width is
also less bound to a power of two.

We see Keccak- 𝑓 as a representative example of a bit-oriented design that
makes use of a column-parity mixing layer and we make the case that they are
also suitable for byte-oriented designs. In Section 5.5 we outline a general design
strategy with attention for how strong bounds can be attained for differential and
linear trails. We apply this strategy concretely to design a 256-bit permutation
called Mixifer with an efficient inverse. This can be used as a permutation in an
Even-Mansour block cipher [EM93] or in modes such as proposed in [Men16].
The width of 256 is large enough to make the birthday bound 2128 far enough to
not pose a practical problem and it is small enough to still be called lightweight.

77

Chapter 5. Column-Parity Mixers

Our permutation design, presented in Section 5.6, uses a number of ideas
that are of independent interest. It operates on an array of 4 rows of 16 nibbles
each and we arrange the bits of the nibbles in such a way that a bitsliced
implementation is immediate. Its design can be seen as a hybrid between that
of AES and that of Keccak- 𝑓 . We show in Section 5.6.6 that in comparison with
AES and some established permutations, the performance of our permutation is
better or comparable.

5.2 Column-Parity Mixers and their Properties

Column-parity mixers are generalizations of the mixing layer 𝜃 in Keccak- 𝑓 .
Therefore, we adopt the terminology proposed in [BDPV11b]. Unlike the
descriptions therein, we will treat the states that these mixing layers operate on
as two-dimensional arrays that we will interpret as matrices. In the context of
this section we limit ourselves to matrices with elements of F2, but one can easily
generalize our treatment to elements of F𝑝 with 𝑝 a prime or even to elements of
an arbitrary finite ring.

5.2.1 Matrices

We use I to denote a (square) identity matrix and 0 to denote an all-zero matrix.
We assume that the dimensions of these matrices are determined by context.
The transpose of a matrix 𝐴 is denoted as 𝐴T.

We use 1𝑥 to denote a column vector of 𝑥 components that are all equal to 1.
Consequently, 1T

𝑥 is an all-1 row vector with 𝑥 components. We use 1𝑦𝑥 to denote
a matrix with 𝑥 rows and 𝑦 columns with all components 1. Clearly, 1𝑦𝑥 = 1𝑥1T

𝑦 .

The element of a matrix 𝐴 at row 𝑖 and column 𝑗 is denoted by 𝐴𝑖 , 𝑗 . If 𝐵 = 𝐴T,
we have 𝐵𝑖 , 𝑗 = 𝐴 𝑗 ,𝑖 . The trace of a square matrix is the linear function that simply
takes the sum of its diagonal elements. It is denoted by tr(𝐴), so tr(𝐴) = ∑

𝑖 𝐴𝑖 ,𝑖 .

78

5.2. Column-Parity Mixers and their Properties

5.2.2 Definition of Column-Parity Mixers

We consider linear mappings 𝜃 that operate on arrays with 𝑚 rows and 𝑛

columns of elements of a finite ring, but in this section just F2.

Definition 9. The column parity of a matrix 𝐴 is a (row) vector defined as 1T
𝑚𝐴.

In a matrix 𝐴, a column 𝑥 is called even (odd) if the component with index 𝑥
in 1T

𝑚𝐴 is zero (one).

Definition 10. The expanded column parity of 𝐴 is a matrix with 𝑚 rows all equal
to the column parity of 𝐴, and it is given by 1𝑚𝑚𝐴.

A column-parity mixer (CPM) makes use of a linear transformation operating
on the column parity of a matrix, called its parity-folding transformation. We
denote the parity-folding transformation by multiplying the column parity with
a square matrix 𝑍 at the right. We call the 𝑛 × 𝑛 matrix 𝑍 the parity-folding matrix

of 𝜃. We are now ready to define the 𝜃-effect of a matrix 𝐴.

Definition 11. The 𝜃-effect of 𝐴 with respect to 𝑍 is a row vector, denoted as
eZ(𝐴) (or just e(𝐴) if 𝑍 is clear from the context) and is defined by eZ(𝐴) = 1T

𝑚𝐴𝑍.

For a given input𝐴 and parity-folding matrix𝑍, a column 𝑥 is called unaffected

(affected) if the component with index 𝑥 in eZ(𝐴) is zero (nonzero). Whether a
column is affected or not is fully determined by the column parity of 𝐴 and the
column 𝑥 of the parity-folding matrix 𝑍.

Definition 12. The expanded 𝜃-effect of 𝐴 with respect to 𝑍 is a matrix with 𝑚
rows all equal to the CPM effect, namely, EZ(𝐴) = 1𝑚𝑚𝐴𝑍.

A column-parity mixer 𝜃 simply consists in computing the expanded 𝜃-effect
of a matrix 𝐴 and adding it to 𝐴.

Definition 13. The column-parity mixer 𝜃 using parity-folding matrix 𝑍 is defined
as

𝜃(𝐴) = 𝐴 + EZ(𝐴) = 𝐴 + 1𝑚𝑚𝐴𝑍 .

79

Chapter 5. Column-Parity Mixers

Note that a column-parity mixer is fully defined by a parity-folding matrix 𝑍
and 𝑚.

Example 1. Keccak [BDPV11b] uses a three-dimensional structure, so, for the
sake of this example, let us first flatten the state by looking at a single sheet. With
Keccak- 𝑓 [200], this array would have 𝑚 = 5 rows and 𝑛 = 8 columns. Consider
the following state 𝐴:

𝐴 =



0 0 0 0 0 1 0 0
1 0 0 0 0 1 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 1 0 0
0 1 1 0 0 1 0 0


.

Then the column parity of 𝐴 is [1, 1, 0, 0, 0, 1, 0, 0], so the first two columns and
the sixth column are odd, while the others are even. The 𝜃 step in Keccak- 𝑓
affects the adjacent sheets, but one can modify it slightly such that the operation
is performed within the same sheet. To the reader who is familiar with the
Keccak specification, we change 𝑥 − 1 mod 5 and 𝑥 + 1 mod 5 to 𝑥 mod 5 in
the computation of 𝐷[𝑥, 𝑧] given 𝐶[𝑥, 𝑧]. This means that we can express the
parity-folding matrix 𝑍 as follows:

𝑍 =



1 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0
0 1 1 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 1 1 0
0 0 0 0 0 0 1 1


.

This yields a 𝜃-effect of e(𝐴) = [0, 1, 0, 0, 1, 1, 0, 1], so the second, fifth, sixth, and
eighth column are affected, the others are unaffected. The result of the column-parity

80

5.2. Column-Parity Mixers and their Properties

mixer defined by 𝑍 and 𝑚 on 𝐴 is then

𝜃(𝐴) =



0 1 0 0 1 0 0 1
1 1 0 0 1 0 0 1
0 1 0 0 1 0 0 1
0 1 1 0 1 0 0 1
0 0 1 0 1 0 0 1


.

5.2.3 Group Properties

The composition of two column-parity mixers is again a column-parity mixer.

Lemma 2. Let 𝛼 = 𝜃′ ◦ 𝜃 with 𝜃 and 𝜃′
column-parity mixers with parity-folding

matrices 𝑍 and 𝑍′
respectively. Then 𝛼 is a column-parity mixer. If 𝑚 is even,

the parity-folding matrix of 𝛼 is 𝑍 + 𝑍′
. If 𝑚 is odd, its parity-folding matrix is

(𝑍′ + I)(𝑍 + I) + I.

Proof. We have

𝜃′(𝜃(𝐴)) = 𝐴 + 1𝑚𝑚𝐴𝑍 + 1𝑚𝑚 (𝐴 + 1𝑚𝑚𝐴𝑍)𝑍′

= 𝐴 + 1𝑚𝑚𝐴𝑍 + 1𝑚𝑚𝐴𝑍′ + (1𝑚𝑚)2𝐴𝑍𝑍′ .

If 𝑚 is even, we have (1𝑚𝑚)2 = 0 and this reduces to 𝐴 + 1𝑚𝑚𝐴(𝑍 + 𝑍′). If 𝑚 is odd,
we have (1𝑚𝑚)2 = 1𝑚𝑚 and we have

𝜃′(𝜃(𝐴)) = 𝐴 + 1𝑚𝑚𝐴(𝑍 + 𝑍′ + 𝑍𝑍′)

= 𝐴 + 1𝑚𝑚𝐴((𝑍 + I)(𝑍′ + I) + I) .

⊓⊔

This implies the following corollary:

Corollary 1. The set of all column-parity mixers for given dimensions 𝑚 × 𝑛, with 𝑚

even, together with composition form a group that is isomorphic to the abelian group

(Z𝑛2

2 ,+).

81

Chapter 5. Column-Parity Mixers

Proof. Lemma 2 says that the composition of two CPMs with parity-folding
matrices 𝑍 and 𝑍′ is the CPM with parity-folding matrix 𝑍 + 𝑍′. It follows that
the set of all CPMs of given dimensions 𝑚 × 𝑛 and 𝑚 even, is isomorphic to the
set of binary 𝑛 × 𝑛 matrices with addition. This addition is closed and inherits
the associativity and commutativity from the addition in F2. Its neutral element
is 0 and each element is its own inverse. This is (Z𝑛2

2 ,+). ⊓⊔

It follows that column-parity mixers operating on matrices with an even
number 𝑚 of rows are involutions.

For𝑚 odd, not all column-parity mixers are invertible. We have the following:

Corollary 2. The set of column-parity mixers for given dimensions 𝑚 × 𝑛, with 𝑚 odd

and 𝑍 + I nonsingular, form a group with composition that is isomorphic to the group of

binary invertible 𝑛 × 𝑛 matrices with multiplication.

Proof. Lemma 2 says that the composition of two CPMs with parity-folding
matrices 𝑍 and 𝑍′ is the CPM with parity-folding matrix (𝑍 + I)(𝑍′ + I) + I. Let
us call 𝑍 + I the associated matrix of a CPM. Then the associated matrix of the
composition of two CPMs is the product of their associated matrices. It follows
that the set of all CPMs of given dimensions 𝑚 × 𝑛 and 𝑚 odd, is isomorphic
to the set of invertible binary 𝑛 × 𝑛 matrices with multiplication. This is the
general linear group 𝐺𝐿(𝑛, 2) [DF03]. ⊓⊔

For 𝑚 odd, the order of a CPM is the multiplicative order of its associated
matrix 𝑍 + I. The associated matrix of the inverse of an invertible CPM with
parity-folding matrix 𝑍 is (𝑍 + I)−1.

5.2.4 The Special Case of Circulant Parity-Folding Matrices

𝑍 is a circulant matrix if its elements satisfy 𝑍𝑖+𝑗 mod 𝑛, 𝑗 = 𝑍𝑖 ,0 for all 𝑖 , 𝑗.
Circulant matrices have become a popular building block in many ciphers,
including AES [DR02] and Keccak [BDPV11b]. As the product and sum of two
circulant matrices is a circulant matrix and both I and 0 are circulant matrices, it

82

5.2. Column-Parity Mixers and their Properties

follows that both for 𝑚 even and odd the set of invertible circulant CPMs form
subgroups of the set of invertible CPMs, for given dimensions.

We can express multiplication by a circulant matrix as multiplication by a
polynomial. For that purpose, we express a matrix 𝐴 as a bivariate polynomial,
where the element in row 𝑖 and column 𝑗 corresponds to the coefficient of
monomial 𝑥 𝑖𝑦 𝑗 . Computing the column parity of𝐴 corresponds to multiplication
by the polynomial

∑𝑛−1
𝑖=0 𝑦

𝑖 mod 1 + 𝑦𝑛 . This polynomial can also be expressed
as 1+𝑦𝑛

1+𝑦 . Multiplication by 𝑍 then corresponds to multiplication by a polynomial
𝑧(𝑥) mod 1 + 𝑥𝑛 . So for our column-parity mixer 𝜃, we have

𝜃(𝑎(𝑥, 𝑦)) = 𝑎(𝑥, 𝑦) + 1 + 𝑦𝑚
1 + 𝑦 𝑧(𝑥)𝑎(𝑥, 𝑦) mod (1 + 𝑥𝑛)(1 + 𝑦𝑚) .

We call 𝑧(𝑥) the parity-folding polynomial.
Circulant CPMs with even 𝑚 are involutions. A circulant CPM with odd

𝑚 is invertible if its associated polynomial 1 + 𝑧(𝑥) is coprime to 1 + 𝑥𝑛 and
its inverse has the associated polynomial 𝑦(𝑥) = (𝑧(𝑥) + 1)−1 mod (1 + 𝑥𝑛). A
necessary condition for invertibility is that 𝑧(𝑥) has an even number of nonzero
terms. If not, 1 + 𝑥 divides both 1 + 𝑧(𝑥) and 1 + 𝑥𝑛 .

The transpose of𝜃 is determined by the parity-folding polynomial 𝑧(𝑥−1) mod
1 + 𝑥𝑛 , i. e., the polynomial 𝑧(𝑥) where the terms 𝑥 𝑖 are replaced by 𝑥𝑛−𝑖 .

5.2.5 Computational Cost

Computing the column parities costs 𝑚 − 1 additions in F2 per column totalling
to (𝑚 − 1)𝑛 additions. Adding the effect to the matrix costs one addition per bit
totalling to 𝑚𝑛 binary additions. So the total computational cost is (2𝑚 − 1)𝑛
plus the computational cost of applying 𝑍 to the parity.

For circulant mixers with ℎ the Hamming weight of 𝑧(𝑥), a straightforward
parity-folding implementation would cost (ℎ − 1)𝑛, totalling to (2𝑚 + ℎ − 2)𝑛.
Dividing by the total number of bits in the state, this results in a computational

83

Chapter 5. Column-Parity Mixers

cost per bit of 2 + (ℎ − 2)/𝑚. Remarkably, for parity-folding polynomials with
two nonzero terms, the cost is exactly 2 additions per bit.

The number of additions gives a good idea of the circuit complexity in
dedicated hardware and the number of binary XOR gates in bitslice-oriented
software implementations. In the latter, the efficiency additionally depends
on the way the state can be mapped onto CPU words and computing 𝜃 may
involve additional (cyclic) shift operations. Section 5.6.5 shows the exact cost for
a concrete example.

5.3 Propagation of Linear Masks

After having explained what CPMs are, this section discusses their properties
related to linear cryptanalysis [Mat94]. We first provide a brief overview of linear
propagation for generic iterated permutations, before discussing CPM-specific
details.

5.3.1 Linear Propagation in Iterated Permutations

Linear cryptanalysis (LC) exploits large correlations across a cryptographic prim-
itive and resistance against it is one of the main criteria of modern cryptographic
design. It can be described in different ways and we adopt the notation and
formalism used in [DR02].

In LC we consider a sum (in F2) of bits (usually called parities) at the output
of a mapping and try to find sums of bits at the input of the mapping that have
a high correlation with the sum at the output. Which bits are included in the
sums is described by masks. Masks have the same dimensions and shape as the
state and indicate the bits included in a sum by having a 1 in the corresponding
positions and 0 in all other positions. While the correlations are between sums
of input bits and sums of output bits, we will indicate these by the term mask to
make the descriptions more readable. Masks play a role in LC similar to that of
differences in differential cryptanalysis (DC).

84

5.3. Propagation of Linear Masks

In iterated permutations or block ciphers, a correlation between an output
mask 𝑣 and an input mask 𝑢 can be split into a number of linear trails. The value
of the correlation is the sum of the correlation contributions of these individual
trails. Note that correlations and correlation contributions have a sign, so there
can be destructive interference. A linear trail𝑄 over an 𝑛-round permutation (or
block cipher) consists of a sequence of 𝑛 + 1 masks: a mask at the input of each
round 𝑞𝑖 and a mask 𝑞𝑛 at the output of the last round. A pair of consecutive
masks 𝑞𝑖 , 𝑞𝑖+1 has a certain correlation over round 𝑖, denoted as 𝐶(𝑞𝑖 , 𝑞𝑖+1). The
correlation contribution 𝐶(𝑄) of a linear trail 𝑄 is simply the product of the
correlations over all its rounds:

∏𝑛−1
𝑖=0 𝐶(𝑞𝑖 , 𝑞𝑖+1).

The value of an input-output correlation 𝐶(𝑢, 𝑣) is given by:

𝐶(𝑢, 𝑣) =
∑

𝑄 with 𝑞0=𝑢,𝑞𝑛=𝑣

𝐶(𝑄) .

Large input-output correlations can hence occur if there are linear trails with
large correlation contributions (e. g., in the block cipher DES [Mat94]) but they
can in principle also occur when there is systematic clustering of huge numbers
of trails with very small correlation contributions. An artificial example is a
permutation 𝑃 that consists of a permutation 𝑃′ followed by its inverse 𝑃′−1. The
permutation 𝑃 is the identity and hence has many large input-output correlations
but no high-correlation linear trails if 𝑃′ has none.

Modern ciphers should be designed taking LC into account and hence should
not have linear trails with high correlation contributions. A way to achieve this
with a relatively small number of rounds is called the wide-trail strategy [DR02],
underlying many modern designs including AES and Keccak. In this strategy,
the mixing layer in the round function plays an important role. To study the
correlation contribution of linear trails, we need to study correlations over the
round function. The round function typically consists of a nonlinear layer and
a linear layer. The description of the correlation properties of nonlinear S-box
layers can be efficiently computed using the Walsh-Hadamard transform. Linear
layers have the property that every output mask is correlated to exactly one input

85

Chapter 5. Column-Parity Mixers

mask and that the correlation is one. In other words, there is a deterministic
function that maps masks 𝑣 at the output of a linear layer to masks 𝑢 at its
input. In the following subsection, we will derive an expression for this function
𝑢 = 𝑓 (𝑣).

5.3.2 Mask Propagation in Column-Parity Mixers

We want to express this function in our matrix notation. As an intermediate
step, we first need a way to express a sum of specific bits of a matrix, for which
we use the trace function.

The trace function has a number of interesting properties that we will exploit
in our derivation:

▶ Linearity: tr(𝐴 + 𝐵) = tr(𝐴) + tr(𝐵).

▶ Transpose-invariance: tr(𝐴T) = tr(𝐴).

▶ Commute-invariance: for 𝐴 and 𝐵 with compatible dimensions and 𝐴𝐵 a
square matrix, it is easy to show that tr(𝐴𝐵) = tr(𝐵𝐴) [LLM16].

▶ Multiplication-cyclic invariance: for any sequence of matrices𝐴, 𝐵, 𝐶, . . . , 𝑍
with compatible dimensions and with𝐴𝐵 · · ·𝑍 a square matrix: tr(𝐴𝐵 · · ·𝑍) =
tr(𝐵𝐶 · · ·𝑍𝐴) = tr(𝐶𝐷 · · ·𝑍𝐴𝐵) =

A mask 𝑉 has the same dimensions as the matrix 𝐴 and it specifies the sum (in
F2) of the elements of 𝐴 in positions where 𝑉 has a one, i. e.,

∑
𝑖 , 𝑗 𝑉𝑖 , 𝑗𝐴𝑖 , 𝑗 . This

cannot be expressed as a matrix multiplication, but we can express it with the
trace function.

Lemma 3. The sum of the elements of 𝐴 selected by the mask 𝑉 can be expressed as

tr(𝑉T𝐴) .

Proof. Let 𝐵 = 𝑉T𝐴, then 𝐵 𝑗 , 𝑗 =
∑
𝑖 𝑉𝑖 , 𝑗𝐴𝑖 , 𝑗 . As tr(𝐵) = ∑

𝑗 𝐵 𝑗 , 𝑗 , it follows that
tr(𝑉T𝐴) = ∑

𝑖 , 𝑗 𝑉𝑖 , 𝑗𝐴𝑖 , 𝑗 . ⊓⊔

86

5.4. Diffusion Properties

Lemma 4. A sum of bits at the input of 𝜃 defined by a mask𝑈 equals a sum of bits at

the output of 𝜃 defined by mask 𝑉 if and only if

𝑈 = 𝑉 + 1𝑚𝑚𝑉𝑍T .

Proof. Let 𝐵 be the image of 𝐴 through the column-parity matrix. Then given
tr(𝑈T𝐴) = tr(𝑉T𝐵), we want to derive the relation between𝑈 and𝑉 . In particular,
given the mask 𝑉 at the output of 𝜃, we can compute the mask𝑈 at its input by
filling in the expression for 𝐵:

tr(𝑈T𝐴) = tr(𝑉T(𝐴 + 1𝑚𝑚𝐴𝑍))

= tr(𝑉T𝐴 +𝑉T1𝑚𝑚𝐴𝑍)
= tr(𝑉T𝐴) + tr(𝑉T1𝑚𝑚𝐴𝑍) .

For the rightmost term, using multiplication-cyclic invariance gives tr(𝑉T1𝑚𝑚𝐴𝑍) =
tr(𝑍𝑉T1𝑚𝑚𝐴). Moreover, using 𝑍𝑉T1𝑚𝑚 = (1𝑚𝑚T𝑉𝑍T)T with 1𝑚𝑚T

= 1𝑚𝑚 yields

tr(𝑈T𝐴) = tr(𝑉T𝐴) + tr((1𝑚𝑚𝑉𝑍T)T𝐴)

= tr(𝑉T𝐴 + (1𝑚𝑚𝑉𝑍T)T𝐴)

= tr((𝑉 + 1𝑚𝑚𝑉𝑍T)T𝐴) .

⊓⊔

We call the mapping from 𝑉 to𝑈 specified in Lemma 4 the transpose of 𝜃
and denote it as 𝜃T. The expression of Lemma 4 is essential when searching for
linear trails, as reported on in Section 5.5.3.

5.4 Diffusion Properties

The diffusion properties of an MDS matrix are typically summarized by its
differential and linear branch numbers [DR02] that are both the same and equal
to the dimension of the matrix plus 1. This dimension is also the number of

87

Chapter 5. Column-Parity Mixers

elements a single-element difference propagates to. The study of the diffusion
properties of an MDS matrix is largely independent of the other steps in the
round function. The proof of the fact that every 4-round trail in AES has 25
active S-boxes requires from the MixColumns matrix only that it is MDS. Of
course, that proof also requires a property of ShiftRows.

Diffusion in column-parity mixers is more subtle: their properties only
become meaningful in the context of a design approach, where interaction with
other steps of the round function must be taken into account. In this section we
discuss some concepts that are shared by all column-parity mixers.

5.4.1 The Column-Parity Kernel

The set of states 𝐴 with column parity equal to zero form a vector space with
dimension 𝑛(𝑚− 1). Following [BDPV11b], we call this the (column-parity) kernel.
For states 𝐴 in the kernel the parity is zero and consequently 𝜃 reduces to the
identity mapping.

There are states in the kernel with Hamming weight 2, namely all states with
a pair of active bits in the same column. Again following [BDPV11b], we call
this an orbital. States in the kernel have an even number of active bits per column
and as observed in [MDA17], they can be seen as a collection of orbitals. Due
to the existence of single-orbital states, the (Hamming) branch number, both
differentially and linearly, of every column-parity mixer is at most 4. We prove
that for all reasonable choices of 𝑚, 𝑛 and 𝑍, the branch number is 4.

Lemma 5. An invertible CPM 𝜃 with 𝑚 ≥ 2 and where 𝑍 has no all-zero rows or

columns, has differential and linear branch numbers 4, with the only exception of the

case where 𝑚 = 𝑛 = 2 and 𝑍 = I.

Proof. The branch number is at most 4 as 𝜃 will map a single-orbital state to a
single-orbital state.

88

5.4. Diffusion Properties

Let us first look at the differential branch number. The differential branch
number can only become smaller than 4 if there is a single-bit state that is
mapped to a state with less than 3 bits by 𝜃 or 𝜃−1.

Let us first look at a single-bit state at the input of 𝜃. A single-bit state 𝐴
leads to a single-bit parity. Let the number of affected columns in the 𝜃-effect be
𝑥. We know that 𝑥 ≥ 1 as 𝑍 has at least one 1 per row. If these affected columns
overlap with the column with the single 1 in 𝐴, then the Hamming weight of
𝜃(𝐴) is 𝑥𝑚−1. If not, it is 𝑥𝑚+1. Let 𝜈 denote the sum of the Hamming weights
of 𝐴 and 𝜃(𝐴). It follows that 𝜈 = 𝑥𝑚 and 𝜈 = 𝑥𝑚 + 2, respectively. We now
distinguish between the cases where 𝑚 is even and where 𝑚 is odd.

▶ Even 𝑚: if there was no overlap, 𝜈 = 𝑥𝑚 + 2 ≥ 4. If there was overlap,
𝜈 = 𝑥𝑚 = 2 only if 𝑥 = 1 and 𝑚 = 2. So this is the case of a single affected
column overlapping with the odd column, but this is exactly what is
excluded in the lemma. As for even 𝑚 we have 𝜃−1 = 𝜃, that case is proven
too.

▶ Odd 𝑚: if 𝑥 = 1, i. e., there is one affected column, then it cannot overlap.
Namely, if that is the case, it implies a single 1 in the corresponding row
that is on the main diagonal. However, for 𝜃 to be invertible, 𝑍 + I must be
invertible and if 𝑍 contains a row with a single 1 and that is on the main
diagonal, that row is 0 in 𝑍 + I and hence it is not invertible. The same
reasoning applies to 𝜃−1 as 𝑍′ + I with 𝑍′ the parity-folding matrix of 𝜃−1

must be invertible.

For the linear branch number it suffices to replace 𝜃 by 𝜃T and rows of 𝑍
become columns of 𝑍. ⊓⊔

Example 2. The simplest possible CPM that satisfies the conditions of Lemma 5
operates on two rows and two columns and has

𝑍 =

[
0 1
1 0

]
.

89

Chapter 5. Column-Parity Mixers

If the 4 bits of the state are arranged in a 4-bit column vector, 𝜃 can be expressed
as multiplying it with the following familiar matrix:

1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


.

This matrix was first used in the block cipher MMB [DGV93] and is still used
in many modern lightweight ciphers (sometimes modulo some row and/or
column permutations), where it is often referred to as a near-MDS matrix. See for
instance Minalpher [STA+15], 𝐿0 and 𝐿3 in PRIDE [ADK+14], or Midori [BBI+15].
It has an implementation cost of 1.5 additions per bit. To see that the CPM with
the given 𝑍 and the matrix are very similar, let

𝐴 =

[
𝑎 𝑏

𝑐 𝑑

]
.

Then, using a CPM:

𝜃(𝐴) = 𝐴 + 12
2𝐴𝑍 =

[
𝑎 𝑏

𝑐 𝑑

]
+

[
1 1
1 1

] [
𝑎 𝑏

𝑐 𝑑

] [
0 1
1 0

]
=

[
𝑎 + 𝑏 + 𝑑 𝑎 + 𝑏 + 𝑐
𝑏 + 𝑐 + 𝑑 𝑎 + 𝑐 + 𝑑

]
.

Similarly: 
1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1



𝑎

𝑏

𝑐

𝑑


=


𝑎 + 𝑏 + 𝑑
𝑎 + 𝑏 + 𝑐
𝑏 + 𝑐 + 𝑑
𝑎 + 𝑐 + 𝑑


.

We now consider the size of the column-parity kernel by counting the number
of states with a given number of orbitals. The number of single-orbital states,
i. e., states that have in total 4 active bits before and after 𝜃, is given in following
lemma.

Lemma 6. The number of single-orbital states is 𝑛
(𝑚

2
)
.

90

5.4. Diffusion Properties

Proof. The orbital can be in one of 𝑛 columns and the number of possible
positions of the bits of the orbital in the column is

(𝑚
2
)
. ⊓⊔

If we divide the number of 2-bit states in the kernel by the state size, we
obtain 𝑚−1

2 . In this respect, it is advantageous for a given state size to have a
small number of rows and a large number of columns.

We can similarly compute the number of states in the kernel with 2, 3, 4, etc.
orbitals. The number of such states increases exponentially with the number
of active bits. For example, we have the following lemma on the number of
two-orbital states.

Lemma 7. The number of two-orbital states is

(𝑛
2
) (𝑚

2
)2 + 𝑛

(𝑚
4
)
, where the second term

disappears for 𝑚 < 4.

Proof. We can partition the set of states with two orbitals into two subsets: those
where the orbitals are in different columns and those where they are in the same
column. For the first set of states, one can position the two orbitals in the 𝑛
columns in

(𝑛
2
)

ways and each of the two orbitals can take
(𝑚

2
)

positions. Their
product accounts for the first term. For the second set of states, the four active
bits can be in one of 𝑛 columns and the number of possible positions among the
𝑚 bits of that column is

(𝑚
4
)
. If 𝑚 < 4, of course no four bits can be stuffed in a

column and the second term disappears. ⊓⊔

5.4.2 Propagation of Isolated Bits

Often one tries to determine the minimum number of rounds such that each
output bit depends on each input bit, typically called full diffusion. One way of
measuring full diffusion is propagating single-bit input differences or a single-bit
output mask through the rounds. In this context it is interesting to see how
single-bit differences propagate.

A single-bit difference at the input of 𝜃 propagates to on average 1 + |𝑍 |𝑚
bits, with |𝑍 | the Hamming weight of 𝑍 divided by its dimension. For the

91

Chapter 5. Column-Parity Mixers

circulant case, this is exactly 1 + |𝑧(𝑥)|𝑚 with |𝑧(𝑥)| the Hamming weight of the
parity-folding polynomial, assuming its constant term is 0. The same holds
for propagation of single-bit masks at the output of 𝜃 to the input. For a
single-bit difference at the output (or single-bit mask at the input) of 𝜃 we have
to distinguish between two cases. If 𝑚 is even, the column-parity mixer is an
involution and the same properties hold as in the forward direction. For odd 𝑚,
we have to consider the column-parity mixer defined by 𝑍′ = (𝑍 + I)−1 + I. The
matrix 𝑍′ may have much higher Hamming weight than 𝑍, as is illustrated by 𝜃

in Keccak [BDPV11b] and even for large states, full diffusion in the backward
direction can be immediate.

5.4.3 Comparison to Other Mixing Layers

Mixing layers can be compared by their cost, where cost can mean the number of
additions, but also the number of cycles on a specific CPU microarchitecture or
other quantities. Here we consider the number of binary additions or two-input
XOR gates, as that is independent from CPUs or standard cell libraries.

Mixing layers should also be compared by their mixing power. This is best
quantified by bounds on linear and differential trails, but that requires to study
a full permutation. We will do so in Section 5.6.3, but for the moment we restrict
ourselves to only consider the mixing layer itself. This implies that we are
limited to use the linear and differential branch numbers that should be high
relative to the dimensions of the state.

Ever since SHARK [RDP+96] and AES [DR02], MDS matrices have been a
common choice for a mixing layer as their branch numbers are optimal. The
past few years have seen a lot of work on searching for more efficient MDS
matrices. A noteworthy development is that of serialization of the mixing layer,
first put forward by PHOTON [GPP11] and LED [GPPR11]. This decreases the
hardware area that is required to implement matrix multiplication. Another

92

5.5. A General Design Strategy

line of work focussed more directly on searching MDS matrices that require
fewer additions [BKL16; LS16; LW16; LW17].

While there has been a lot of improvement, it was always assumed that there
was a fixed cost of 𝑛(𝑛 − 1)𝑚 additions [BKL16], derived from accumulating all
the multiplication results. Recently, it has been shown that this lower bound
does not really hold when global optimizations are taken into account [KLSW17].
In fact, there exist MDS matrices that can be implemented with fewer additions.

Other ciphers such as PRIDE [ADK+14], Midori [BBI+15], Minalpher [STA+15],
and SKINNY [BJK+16] have dropped the MDS requirement to achieve a better
trade-off between performance and security.

Table 5.1 provides a comparison of mixing layers. Most cost numbers are
computed using the results of [KLSW17]. We list the number of additions per
bit, in order to normalize for the different dimensions. While more lightweight
mixing layers exist, CPMs offer a good trade-off. It should be noted, however, that
bounds over multiple rounds for a concrete scheme are much more meaningful
than just a pair of branch numbers.

5.5 A General Design Strategy

In this section, we present a design strategy for the round function of nibble- or
byte-oriented iterative block ciphers or permutations, viewed as a substitution-
permutation network (SPN), where a CPM is embedded as its mixing layer.
We also outline a search strategy for truncated linear and differential trails. In
Section 5.6, we instantiate this design strategy with a specific permutation and
give security bounds and implementation benchmarks.

5.5.1 Structure of the Round Function

We take the 𝑏-bit state to be a rectangle with 𝑚 rows and 𝑛 columns. The state
consists of 𝑚𝑛 cells of size ℓ , so 𝑏 = ℓ𝑚𝑛. The cells are typically nibbles (ℓ = 4)

93

Chapter 5. Column-Parity Mixers

Table 5.1: Comparison of mixing layers.

Cipher/permutation Type Dimensions Additions
per bit

Branch
number

AES MDS 4 × 4, F28 3.03 5
Joltik [JNP15] MDS 4 × 4, F24 3 5
PHOTON [GPP11] MDS 6 × 6, F24 * 5† 7
Prøst [KLL+14] MDS 16 × 16, F2 4.5† 5
Midori [BBI+15] Not MDS‡ 4 × 4, F24 or F28 1.5 4
Minalpher [STA+15] Not MDS‡ 4 × 4, F24 1.5 4
Prince [BCG+12] Not MDS 64 × 64, F2 1.5 4
SKINNY [BJK+16] Not MDS 4 × 4, F24 or F28 0.75 2
Keccak- 𝑓 [BDPV11b] CPM 5 × 5 × 𝑤§, F2 2 4
Circulant CPM CPM 𝑚 × 𝑛 2 + ℎ−2

𝑚
∥ 4

* Dimensions are for 𝑃100, 𝑃144, and 𝑃196.
† Unknown whether it can be computed with fewer additions.
‡ Can also be considered to be a CPM, following Example 2.
§ Where 𝑤 ∈ {8, 16, 32, 64}, depending on which variant of Keccak- 𝑓 .
∥ Where ℎ is the Hamming weight of 𝑧(𝑥). Additions/bit are between 2−1/𝑚

and 2 + (𝑛 − 2)/𝑚 (inclusively).

or bytes (ℓ = 8) for software-performance reasons, although other values are
also possible. The cells can be seen as elements of F2ℓ .

The round function consists of four layers:

▶ A nonlinear S-box layer 𝛾, that applies the same invertible S-box to every
cell.

▶ A column-parity mixer 𝜃. Although it operates on elements of F2ℓ , the
parity-folding matrix only contains 0 and 1.

94

5.5. A General Design Strategy

▶ A transposition layer. This consists of two steps: one that permutes the
rows called 𝜋 and one that performs cyclic shift operations (rotations) on
the rows, called 𝜌.

▶ The addition of round constants.

In the case of a block cipher, round keys can be added between the rounds
that are derived from a cipher key (and a possible tweak in the case of tweakable
block ciphers) by means of a key schedule. In this chapter we consider the
design of key schedules out of scope.

The roles of the different layers are the same as in the well-known wide-trail
strategy.

The role of the round constants is to remove invariants of the round function:

▶ Invariance of the round function with respect to simple transformations
of the mappings of the state, such as rotations. Attacks relevant in this
context are rotational cryptanalysis [KN10].

▶ Invariance of the round function across the different rounds. Relevant in
this context are slide attacks [BW99].

▶ Existence of sets that are invariant under the round function. Relevant
attacks are here invariant subspace attacks [LAAZ11].

5.5.2 Outline of the Steps in our Design Approach

We assume the designers are faced with the request to design a permutation or
block cipher with some given width 𝑏, that must be efficient on some given set of
platforms. They also know whether side-channel attacks are a concern leading
to the requirement of constant-time code or the ability to mask efficiently, and
whether the inverse of the mapping must be efficient.

The first step in the design process consists of choosing ℓ , 𝑚, and 𝑛 with
the constraint ℓ𝑚𝑛 = 𝑏. As we have showed in Section 5.4.1, choosing 𝑚

95

Chapter 5. Column-Parity Mixers

large compared to 𝑛 implies that there will be more states in the kernel of 𝜃.
Diffusion of isolated bits, however, benefits from choosing 𝑚 large, as shown in
Section 5.4.2.

Once ℓ is determined, one can design the 𝛾 S-box quasi-independently of
the other components of the round function. Important metrics are its algebraic
degree, the maximum input-output correlation, the maximum differential
probability, but also its implementation cost. For the latter, one should take into
account which are the main implementation targets, such as ASICs, bitsliced
software, or software using table lookups. This is not different from most design
strategies.

The design of 𝜃, 𝜋, and 𝜌 can be performed in two phases, taking advantage
of the kernel property of CPMs.

In a first phase, propagation is investigated of difference patterns and masks
inside the kernel and that are truncated [Knu95]. The latter means that at cell
level we do not consider the actual values but only whether the cell in the
pattern is passive (all-zero) or active (nonzero). For such patterns, 𝜃 acts as
the identity function, as we impose that they are in the kernel. Moreover, 𝛾
acts as the identity, because the S-box is invertible and hence a nonzero input
difference leads to a nonzero output difference, and any sum of bits at the output
is balanced and hence a nonzero mask at the output cannot propagate to an
all-zero mask at the input. It follows that the propagation of such patterns is fully
determined by the transposition steps 𝜋 and 𝜌. As these steps just move cells
around and do not mix them, this propagation is fully deterministic. Moreover,
transpositions are their own transpose and hence masks and difference patterns
propagate in the same way. Hence one can take a pattern 𝐴0 in the kernel and
propagate it forward through 𝜌 ◦ 𝜋 resulting in 𝐴1. If the resulting pattern
can be in the kernel, one can propagate one more round and so on. A pattern
that has at least one column with a single active cell cannot be in the kernel, all
other patterns can. In a column with two active cells, these must have the same
value (2ℓ possibilities). In a column with three active cells, if two of the cells

96

5.5. A General Design Strategy

have value 𝑥 and 𝑦, the third has value 𝑥 + 𝑦 and hence it follows that 𝑥 ≠ 𝑦

(2ℓ (2ℓ − 1) possibilities). As the number of active cells grows, more cases can
be distinguished. In any case, a pattern can be propagated through the rounds
until it has a column with a single active cell.

This first phase can be used to select the rotation distances of 𝜌 and the 𝜋

permutation. This allows to reduce all possible values to a reasonably-sized
set of candidate parameter values. For instance, if 𝜌0 and 𝜌1 are two rotation
distances and 𝜌0 = 𝜌1, it makes it easier to remain longer in the kernel: a single
orbital in some column will, after 𝜌◦𝜋, still be a single orbital. Hence this should
be avoided. Similarly, when 𝜌𝑖 ≠ 𝜌 𝑗 but 𝜌𝑖 = 𝑐𝜌 𝑗 for all 𝑖 , 𝑗 ∈ [0, 𝑚 − 1], 𝑖 ≠ 𝑗

where 𝑐 is some integer, there exist patterns with multiple orbitals that remain
in the kernel after applying the transposition layer.

The obtained bounds on trails in the kernel can then be used in the second
phase to decide on the amount of work one wants to do in the parity-folding
matrix. A further selection of 𝑍 candidates can be made by means of a full trail
search and diffusion criteria such as the number of rounds to reach full diffusion
or to meet the (strict) avalanche criterion.

Finally, the round constants can be designed quasi-independently from the
other parts of the round function, such that various invariant attacks are not a
concern [BCLR17].

5.5.3 Searching Linear and Differential Trails

Given a candidate design that follows the outlined approach, its resistance
against truncated linear and differential cryptanalysis should be quantified by
scanning a large search space of trails. For most ciphers nowadays, this search is
performed using Mixed Integer Linear Programming (MILP). However, recently
a very different technique was used to find trails for Keccak, which appeared to
be quite promising [MDA17]. There, a unique decomposition of a difference
pattern is defined, allowing a tree-based generation of so-called two-round trail

97

Chapter 5. Column-Parity Mixers

cores, where many branches can be pruned and symmetry can be used to skip
over large parts in the search space. We will explain this in more detail.

We use techniques that are based on that work to find trails for our design.
However, to make it work for our design, we have to make a number of
modifications. In this section we will also highlight the most interesting
differences, that are due to the different dimensions of the states and the choice
of a bit-oriented design versus a design with an almost arbitrary cell size ℓ .

Trails. A trail 𝑄 is a sequence over 𝑟 rounds. In the case of linear cryptanalysis,
it is a sequence of masks. In the case of differential cryptanalysis, it is a sequence
of difference patterns. This section mostly uses the neutral term state pattern.
A cell in a state pattern is called passive when it is 0 and active when it is any
nonzero value.

We barely distinguish between linear and differential cryptanalysis, because
we have shown in Section 5.3 that masks propagate through 𝜃T in the same
way that differences propagate through 𝜃. Furthermore, the 𝛾 step acts as the
identity function as it does not alter the activity of cells: what is active remains
active and what is passive remains passive. The same holds for the addition of
round constants. Linear masks also propagate the same as differences through
row permutations and rotations. This means that the only difference between
searching truncated differential and truncated linear trails is that in differential
trails, forward propagation through 𝜃 is governed by 𝑍, and in linear trails
backward propagation through 𝜃 is governed by 𝑍T.

Because we only consider truncated trails, we only look at cells and not
at individual bits. The weight 𝑊 of a trail 𝑄 over 𝑟 rounds is defined as
𝑊 =

∑𝑟−1
𝑖=0 |𝑞𝑖 |, where |𝑞𝑖 | denotes the number of active cells in 𝑞𝑖 .

Trivial trails in the kernel. The possibility to remain in the kernel leads to
some trivial trails. One example of a starting state pattern is given in Fig. 5.1a, for
dimensions 𝑚 = 4 and 𝑛 = 16, with two full rows of active cells. In general, for

98

5.5. A General Design Strategy

all dimensions, if the column parity is the all-0 vector, 𝜃 will just be the identity
function. Furthermore, a transposition layer consisting of row permutations
and rotations will be unable to move the pattern out of the kernel. This leads to
a trivial trail over an arbitrary number of rounds. However, this trail has a high
weight of𝑊 = 2𝑛𝑟 active cells.

When 𝑍 is circulant, when there is only one full row of active cells and when
the column parity is therefore the all-1 vector, 𝜃 is the identity function when
the number of affected columns for a single active cell is even. Then there is a
trail of weight𝑊 = 𝑛𝑟 active cells. Recall that a column is affected when its bit
in the 𝜃-effect is one. When the number of affected columns is odd, 𝜃 will be
the complement function. The trail (with even length) will then have weight
𝑊 = 𝑛 𝑟2 + (𝑚 − 1)𝑛 𝑟2 = 𝑚𝑛𝑟/2 active cells.

For reasonable dimensions, 𝑛 is high enough such that these do not pose a
problem. Other state patterns with fewer active cells might be able to stay in the
kernel for one or two rounds, but the transposition layer should always move
them out of the kernel soon. An example is shown in Fig. 5.1b. This means that
the property that a CPM has a kernel will not pose a serious threat.

(a) Remains in the kernel indefinitely. (b) Should quickly move out of the kernel.

Figure 5.1: Examples of state patterns in the kernel.

Generating two-round trails. In an 𝑟-round trail with weight𝑊 the average
weight per round differential is 𝑊

𝑟 and hence it always contains a round
differential with weight 𝐿 ≤

⌊
𝑊
𝑟

⌋
active cells. When one wants to find all

𝑟-round trails up to weight𝑊 , one can therefore generate round differentials up

99

Chapter 5. Column-Parity Mixers

to weight 𝐿 and extend all of them forward and backward 𝑟−1 rounds. However,
it was observed in [MDA17] that there are fewer two-round trail cores with
weight below 2𝐿 than differentials of weight below 𝐿. We therefore generate
two-round trail cores up to weight 2𝐿 + 1 active cells and extend them 𝑟 − 2
rounds forward and backward.

Similarly to [MDA17], generating the two-round trails is modeled as the
traversal of a tree, where each node represents a pair of state patterns at the
input and output of 𝜃. The root is formed by the empty state patterns. The idea
is that the weight monotonically increases when visiting a node’s children. It is
then possible to prune the branches of which it is known that all descendants
will have a weight higher than 2𝐿.

As with Keccak- 𝑓 , we can uniquely decompose every state pattern into a
parity-bare state and a list of free orbitals. A parity-bare state is a state pattern
that does not have free orbitals. A free orbital is a pair of two active cells in
an unaffected column, as was already mentioned in Section 5.4.1. Removing a
free orbital from a state pattern also removes two active cells after 𝜃, so adding
a free orbital to a state pattern will always increase the weight of a trail by 4
active cells. This decomposition reduces the problem to that of generating all
parity-bare states in a weight-increasing manner, because we can construct all
states up to some weight 2𝐿 + 1 by generating all parity-bare states up to that
weight and adding free orbitals to those where there is still budget.

A parity-bare state consists of a list of odd columns, i. e., columns with
nonzero parity. Initially, at the root node, this list is empty. Then one odd
column is added to the list. This means that the children of the root node are
all the state patterns with a single odd column. At every level of the tree, new
columns are added.

On top of the tree of parity-bare states, all the nodes also form the root of
their own tree, now maintaining a list of free orbitals, such that at each level
free orbitals are added up to the limit weight. Together, this guarantees that all
two-round trails will be found.

100

5.5. A General Design Strategy

Moreover, the rotation-symmetric nature of the state in the horizontal
direction and of all operations allow us to prune many more branches of the
trees. There is only need to consider canonical state patterns, where a state
pattern is defined to be canonical if and only if it is minimal under all horizontal
translations given a total ordering over state patterns. In this case, the total
ordering is just the lexicographical ordering on [𝑧, 𝑦], where 𝑧 is the horizontal
axis and 𝑦 the vertical axis, to keep the notation similar to [MDA17]. The lower
left has coordinates (𝑧, 𝑦) = (0, 0).

Propagation of cells and trail extension. After having generated two-round
trail cores, they need to be extended forward and backward by 𝑟 − 2 rounds.
With Keccak- 𝑓 , extension implies that one needs to check which patterns are
compatible through the nonlinear 𝜒 step. Given a nonzero state pattern at the
end of a trail, there are multiple possibilities after 𝜒 and each case needs to be
explored. This branching behaviour causes an exponential increase of the search
space when extending to more rounds.

However, in our case we are considering truncated trails and 𝛾 has no effect
on state patterns. This is very different from the situation in [MDA17]. Instead,
this branching behaviour is now caused by 𝜃.

To see this, consider a state pattern before and after 𝜃. Assume a column
has ≥ 2 active cells before 𝜃. To apply 𝜃, we start by computing the parity of
that column. This means that we sum over nonzero differences (in the case of
differential cryptanalysis). It is possible that this results in a nonzero difference
(i. e., the column is odd), but it is also possible that the nonzero differences cancel
each other out and the column becomes even. Both cases should be explored
and this causes the search space to branch.

There is another source of branching. We distinguish between four types of
columns: even affected, even unaffected, odd affected, and odd unaffected.

When a column of the state pattern is unaffected, 𝜃 will not add anything to
the cells in that column. Therefore, cells that were active before 𝜃 will remain

101

Chapter 5. Column-Parity Mixers

active after 𝜃. Passive cells will also remain passive. We therefore only need
to consider affected columns. In affected columns, every cell that is passive
before 𝜃 becomes active after 𝜃, as a nonzero difference is added to a difference
of zero in the case of differential trails. However, if a cell is active before 𝜃, it
is unknown whether it will remain active or will cancel out after 𝜃, as some
nonzero difference is added to some nonzero difference. A search for truncated
trails would need to consider both cases for all active cells in affected columns.

However, one can do slightly better. How an active cell propagates depends
on the number of active cells in that column. As an example, let #𝑥 denote
the number of active cells in column 𝑥 (and let 𝑚 ≥ 4). We will make a case
distinction on whether 𝑥 is even or odd, and on #𝑥 , up to #𝑥 = 4.

#𝑥 = 0, column 𝑥 even. Nothing can cancel out. Of course, all cells become
active (with the same difference value) after 𝜃.

#𝑥 = 0, column 𝑥 odd. Impossible.

#𝑥 = 1, column 𝑥 even. Impossible.

#𝑥 = 1, column 𝑥 odd. That active cell may cancel out or not after 𝜃.

#𝑥 = 2, column 𝑥 even. This can only happen when the two active cells have
the same difference value. When 𝑥 is affected, the two active cells either
both cancel out after 𝜃, or none of them, but never only one.

#𝑥 = 2, column 𝑥 odd. This can only happen when the two active cells have a
different difference value. Therefore, either no active cells cancel out after
𝜃, or one of them, but never both.

#𝑥 = 3, column 𝑥 even. This can only happen when all three active cells are
different. At most one of the active cells cancels out after 𝜃.

#𝑥 = 3, column 𝑥 odd. Now there are more possibilities. The active cells can be
all the same, all different, or can consist of one pair and one other value.
This implies that any in {0, 1, 2, 3} active cells cancel out after 𝜃.

102

5.6. The Mixifer Permutation

#𝑥 = 4, column 𝑥 even. The active cells are all the same, all different, or consist
of two pairs. So any in {0, 1, 2, 4} active cells cancel out after 𝜃.

#𝑥 = 4, column 𝑥 odd. All combinations are possible, except that all active cells
have the same difference value. Therefore any in {0, 1, 2, 3} active cells
may cancel out after 𝜃.

This can be extended further to higher values for #𝑥 , but the relative amount
of cases that can be skipped will then decrease. It is clear that the search space
of differential trails branches heavily with a CPM.

We wrote dedicated software to traverse the search space of truncated linear
and differential trails for designs following our approach. The software is freely
available at https://github.com/Ko-/cpm.

5.6 The Mixifer Permutation

5.6.1 Design Goals

To show an instance of this design strategy, in this section we introduce a
concrete permutation and study its security and efficiency. We aim for a suitable
permutation for lightweight applications, such as in the Internet of Things. In
this case, with “lightweight” we mean that it should be fast in constant-time
code for microprocessors such as the ARM Cortex-M series and that it should
require little area in ASICs.

This could be used in a simple (single-key) Even-Mansour construction [EM93]
to build a block cipher or in a construction such as XPX [Men16] to build a
tweakable block cipher. Based on this, one could even build other primitives
such as authenticated encryption. Depending on the mode, we may or may
not need the inverse permutation. To make the permutation more flexible, we
therefore require that the inverse also needs to be efficient.

For efficient full-width processing in software, we would like a state size
that is a power of two. A potential problem with a state size 𝑏 of 128 bits is that

103

https://github.com/Ko-/cpm

Chapter 5. Column-Parity Mixers

this gives a birthday bound of only 64 bits, which may or may not be an issue
depending on the mode in which this permutation is to be used. Again, we
design this permutation to be useful in many scenarios, which is why we choose
our state size to be equal to the next power of two, 𝑏 = 256 bits. This gives a
birthday bound of 128 bits, which should be more than enough.

To achieve fast constant-time code, we aim for a round function that can be
efficiently implemented with bitwise Boolean instructions and cyclic shifts. This
has implications for the way we arrange the bits of the cells in CPU words.

5.6.2 The Construction

First we have to select ℓ , 𝑚 and 𝑛. To have an efficient inverse of 𝜃, we choose
𝑛 to be even, such that 𝜃 becomes an involution. For an efficient bitsliced
implementation of 𝛾, we choose ℓ = 4. Now both 8 rows and 8 columns, and 4
rows and 16 columns are viable options. We set 𝑚 = 4 and 𝑛 = 16, based on the
trivial in-kernel trails discussed in Section 5.5.3.

For 𝛾, applying a 4-bit S-box to every nibble separately can quickly become
expensive. We make sure that, in software, the S-box can be applied efficiently
on a full row, without using lookup tables or other operations that might lead to
timing attacks. We suggest a bitsliced state representation and explore one such
possibility in Section 5.6.5. This works when the S-box is rotation-symmetric.

An ℓ -bit S-box 𝑆 : F2ℓ → F2ℓ is rotation-symmetric if and only if 𝑆(𝑎 ≫
𝑑) = 𝑆(𝑎) ≫ 𝑑 for all 𝑎 ∈ F2ℓ , 𝑑 ∈ [0, ℓ − 1], where ≫ denotes bitwise
rotation. Properties of rotation-symmetric S-boxes (RSSBs) have been explored
in, e. g., [RBG08] and [Kav12]. Rotation-symmetric S-boxes are determined by a
single coordinate function. There are therefore only 224 4-bit rotation-symmetric
functions, which makes them efficiently enumerable. We search exhaustively
through these candidate S-boxes to find an example with nice cryptographic
properties and that also has an efficient implementation. Out of the 65 536
functions, 1536 are invertible. Of course, many are linearly and/or affinely

104

5.6. The Mixifer Permutation

equivalent to each other [LP07]. Out of these 1536 candidates, 512 are optimal

S-boxes, as defined in [LP07]. This means that they have a maximum differential
probability of 1/4 and a maximum input-output correlation of 1/2. All of these
have 3 as their algebraic degree. We then selected the S-box based on the
number of binary Boolean operations that are required to compute it and its
inverse. It can be defined in algebraic normal form by the coordinate function
𝑏0 = 𝑎1 + 𝑎2 + 𝑎0𝑎2 + 𝑎1𝑎2 + 𝑎1𝑎2𝑎3. More details and representations can be
found in the appendix of the original publication [SD18].

For the first phase of selecting 𝜃, 𝜋, and 𝜌, we consider trails in the kernel
of 𝜃. Because of all the symmetry, we can arbitrarily set one rotation distance
to zero, shaving off a few more operations. After some experiments, we set 𝜋
to be the permutation that rotates all rows down. 𝜌 rotates rows nibble-wise
to the right by the distances 14, 3, 10, and 0, respectively, from top to bottom.
This yielded a best trail with a weight of 52 active cells over 4 rounds. For
implementation efficiency, we also make 𝜌 compute an intra-nibble rotation to
the left for all nibbles that are wrapped to the other side. In Section 5.6.5 it will
become clear why this is actually more efficient and not less. Note that this does
not affect our truncated-trail search.

For the second phase, the parity-folding matrix 𝑍 should be chosen such
that the truncated-trail search yields bounds that are not much better than the
in-kernel trails. We end up with a circulant matrix where a column can affect
three other columns. Over 4 rounds, the best differential trail then has a weight
of 46 active cells

The steps of the round function have high symmetry. All four 𝛾, 𝜃, 𝜋, and 𝜌

are invariant under rotation along the rows and rotation of bits within the cells.
Moreover, 𝛾 and 𝜃 are even invariant under rotation along the columns. We
therefore add round constants, that should achieve the following goals:

105

Chapter 5. Column-Parity Mixers

1. Applying a few rounds to a state that has some symmetry 𝐴⊕(𝐴≫ 𝑑) = 0
shall result in a state 𝐵 where 𝐵 ⊕ (𝐵≫ 𝑑) has high Hamming weight, for
all values of 𝑑.

2. Applying a few rounds to two states 𝐴 and 𝐴∗ with 𝐴′ = 𝐴 ⊕ 𝐴∗ and
𝐴′ ⊕ (𝐴′≫ 𝑑) = 0 shall result in a difference 𝐵′ where 𝐵′ ⊕ (𝐵′≫ 𝑑) has
high Hamming weight, for all values of 𝑑.

3. There shall be no invariant subspaces in the linear part of the round
function, including the addition of the round constant.

4. Round-constant addition shall be cheap.

The minimum cost of round-constant addition is a single bitwise addition
per round. Therefore, we have round constants that are nonzero in a single
word. We choose the word that contains the nibbles of the top row in even
positions. We use a simple scheme to achieve asymmetry: all round constants
are obtained by performing a (noncyclic) shift of a single master round constant,
where the shift offset is simply the round index. We believe criteria 1 and 2
listed above are satisfied for the following reasons. First, the round constants are
outside the kernel and hence their influence will spread very quickly. Second,
they do not have symmetry along the rows or within the nibbles.

As for criterion 3, we investigated the algebraic properties of the linear part
of the round function, as explained in [BCLR17]. It can be seen as 4 identical
mappings, each operating on the bits in a specific position of the nibbles. So
each one operates on a matrix of 4 rows and 16 columns. The characteristic
polynomial of this mapping is 1 + 𝑥64 = (1 + 𝑥)64. This suggests that it has
nontrivial invariant subspaces of dimension 1, 2, 4, 8, 16, 32. These are easy to
find, knowing the symmetry. The ones of dimension above 2 simply consist
of states that have periodic rows. The subspace of dimension 32 is the set of
all states with period 8, dimension 16 with period 4, dimension 8 with period
2 and dimension 4 with period 1 (rows are all-1 or all-0). The subspace with

106

5.6. The Mixifer Permutation

dimension 2 are the 4 states with an even number of all-1 states and an even
number of all-0 rows. Finally, the subspace with dimension 1 are the all-0 and
the all-1 state.

The 32 active bits in the round constants are spread evenly over these
4 mappings. It would be problematic if the differences between the round
constants were all periodic. We made sure that this is not the case.

The master round constant has the following value expressed as a bit se-
quence: 11000110111010100001001011001111, starting with the least-significant
bit. This has been generated with the 5-bit LFSR with feedback polynomial
1 + 𝑥3 + 𝑥5. While there are linear recurrences among bits due to a short LFSR,
this has no relation with the symmetry in the steps of the round function and
we therefore believe that this is not a problem.

The round constant for round 𝑖 is this sequence shifted to the left by 𝑖 bits.

Summary. To summarize this and to make this more precise, we introduce a
256-bit iterated permutation called Mixifer. Mixifer consists of 16 rounds. The
256-bit state is arranged as 𝑚 = 4 rows with 𝑛 = 16 columns of 4-bit nibbles.
Every round consists of applying 𝜄 ◦ 𝜌 ◦ 𝜋 ◦ 𝜃 ◦ 𝛾.

▶ 𝛾 is a nonlinear mapping, the S-box. It is a 4-bit S-box that is applied to each
nibble. We choose the rotational-symmetric S-box defined by the following
equation (over F2) for the first coordinate: 𝑏0 = 𝑎1+ 𝑎2+ 𝑎0𝑎2+ 𝑎1𝑎2+ 𝑎1𝑎2𝑎3.

▶ 𝜃 is our column-parity mixer, defined by dimensions 𝑚 = 4, 𝑛 = 16, and
by the following circulant parity-folding matrix 𝑍:

𝑍 =



0 1 1 0 0 1 0 0 · · · 0
0 0 1 1 0 0 1 0 · · · 0
0 0 0 1 1 0 0 1 · · · 0
...

...
...

...
...

...
...

...
. . .

...

1 0 0 1 0 0 0 0 · · · 1
1 1 0 0 1 0 0 0 · · · 0


.

107

Chapter 5. Column-Parity Mixers

Alternatively, the parity-folding polynomial is 𝑧(𝑥) = 𝑥 + 𝑥2 + 𝑥5.

𝐴

⊕

1T
4𝐴 eZ(𝐴)

𝜃(𝐴)

⊕

Figure 5.2: The diffusion layer 𝜃.

▶ 𝜋 permutes the rows as follows: 0 ↦→ 1, 1 ↦→ 2, 2 ↦→ 3, 3 ↦→ 0, where
{0, 1, 2, 3} are row indices, starting from the top.

▶ 𝜌 rotates the 4 rows nibble-wise to the right by the distances 14, 3, 10, and
0, respectively, from top to bottom. Additionally, all the nibbles that are
wrapped to the other side are rotated to the left by 1 bit within that nibble.

𝜋 𝜌

Figure 5.3: The transposition layer 𝜌 ◦ 𝜋.

▶ 𝜄 adds a round constant into the even cells of the top row, starting to count
at 0, as highlighted in Fig. 5.4. In round 𝑖 this is 0xF3485763 shifted to the
right by 𝑖, again starting to count at 0.

108

5.6. The Mixifer Permutation

Figure 5.4: Locations where 𝜄 adds the round constant.

5.6.3 Evaluation

Avalanche effect. We first study the diffusion of our CPM by considering the
avalanche effect for Mixifer. Good diffusion implies that a single bit will quickly
affect as many other bits as possible. Avalanche testing is a quick and easy test
to quantify how quickly diffusion takes place.

For each of the 256 bits, we generate 10 000 random states. A round-reduced
Mixifer is then applied to that state and to that state where one bit is flipped.
Each time, we look at the differences between the outputs. We consider the
amount of bits that are flipped, but also in how many different cells bits are
flipped. It can be seen in Table 5.2 that a single bit flip in a random state has
very rapid diffusion. Already after 3 rounds, each bit of the output is flipped
with 50.0% probability. This is also known as the strict avalanche criterion.

Table 5.2: Avalanche test flipping a single bit.

Rounds 1 2 3

Average probability bit flip 10.2% 47.1% 50.0%
Average probability cell change 20.2% 88.83% 93.8%

Worst-case bits flipped 13 44 89
Worst-case cells changed 13 32 48

Another way to test the avalanche effect is by starting with a state where
only a single bit is set, and to measure how many rounds it takes before every

109

Chapter 5. Column-Parity Mixers

bit in the state is touched. Typically, operations can be changed to ORs and it can
be checked when all bits in the state are set. The results are listed in Table 5.3.
After 5 rounds, ’full’ diffusion is achieved from every starting bit.

Table 5.3: Avalanche test starting with single bit set.

Rounds 1 2 3 4 5

Worst-case bits set 71 196 243 255 256
Worst-case cells set 25 58 63 64 64

Linear and differential cryptanalysis. A strategy for searching truncated
linear and differential trails has been outlined in Section 5.5.3. Here, we only
summarize the trails and bounds that we computed for Mixifer.

First it should be verified that the kernel of the CPM does not pose a serious
concern and that it is infeasible to stay in the kernel for many consecutive rounds,
except for trivial trails where two full rows are active, as was discussed in
Section 5.5.3. We generated trails where the state pattern remains in the kernel
until the last round. The number of active cells per state pattern in the trail is
therefore constant. The in-kernel bounds are summarized in Table 5.4 and the
actual figures are in Figs. 5.5 and 5.6.

Table 5.4: Minimum weight for trails in the kernel until the last round.

Number of rounds 𝑟 2 3 4

Minimum𝑊 active cells 4 18 52

110

5.6. The Mixifer Permutation

𝜌 ◦ 𝜋 ◦ 𝜃

𝜌 ◦ 𝜋 ◦ 𝜃

Figure 5.5: Trail in the kernel until the third round with𝑊 = 18.

𝜌 ◦ 𝜋 ◦ 𝜃

𝜌 ◦ 𝜋 ◦ 𝜃

𝜌 ◦ 𝜋 ◦ 𝜃

Figure 5.6: Trail in the kernel until the fourth round with𝑊 = 52.

Outside of the kernel, we first use our software to generate two-round trails.
After extending these two-round trails, we find the minimum-weight trails for
three and four rounds, both for linear and for differential trails. For three rounds,
both the best linear and the best differential trail have a weight of 27 active cells.
The minimum-weight trails can be found in Figs. 5.7 through 5.10.

111

Chapter 5. Column-Parity Mixers

𝜌 ◦ 𝜋 ◦ 𝜃

𝜌 ◦ 𝜋 ◦ 𝜃

Figure 5.7: Differential trail over 3 rounds with𝑊 = 27.

𝜌 ◦ 𝜋 ◦ 𝜃

𝜌 ◦ 𝜋 ◦ 𝜃

𝜌 ◦ 𝜋 ◦ 𝜃

Figure 5.8: Differential trail over 4 rounds with𝑊 = 46.

112

5.6. The Mixifer Permutation

𝜌 ◦ 𝜋 ◦ 𝜃

𝜌 ◦ 𝜋 ◦ 𝜃

Figure 5.9: Linear trail over 3 rounds with𝑊 = 27.

𝜌 ◦ 𝜋 ◦ 𝜃

𝜌 ◦ 𝜋 ◦ 𝜃

𝜌 ◦ 𝜋 ◦ 𝜃

Figure 5.10: Linear trail over 4 rounds with𝑊 = 40.

113

Chapter 5. Column-Parity Mixers

For this experiment, Fig. 5.11 shows the number of two-round differential
trails that needed to be considered and their weights. The plot for linear trails
would look similar.

0 4 8 12 16 20 24 28

101

103

105

107

109

𝑊

N
um

be
ro

ft
ra

ils

Figure 5.11: Number of active cells of two-round differential trails.

Table 5.5 shows the overall minimum weights, combining trails in the kernel
and outside the kernel. It can be seen that after four rounds, the trails in the
kernel are no longer the minimum-weight trails. We expect the weight to again
increase significantly for subsequent rounds, but we were not able to cover the
full search space anymore.

Table 5.5: Minimum weight in number of active cells for trails.

Number of rounds 𝑟 1 2 3 4

Minimum𝑊 differential 1 4 18 46
Minimum𝑊 linear 1 4 18 40

114

5.6. The Mixifer Permutation

Clustering of differential trails. So far we have considered truncated trails.
However, as the round function is cell-oriented, there may be significant cases of
trail clustering. In particular, there may be multi-round differentials with many
differential trails in the same truncated differential trail.

For two-round AES, this was investigated in [DR06] and it turned out that
the differential over two rounds has a maximum differential probability (DP)
of 13.25 × 2−32, while the best two-round trail has DP 4 × 2−32. The differential
is the result of 75 trails, all in the same truncated trail. These investigations
were done on an interesting sub-structure of AES, the so-called AES super-box.
This structure is a permutation operating on a 4-byte array and consists of the
SubBytes S-box layer, MixColumns, round key addition, and again a SubBytes
S-box layer, all restricted to a 4-byte array. The best differentials over that
structure have in total 5 active S-boxes over the two SubBytes layers and those
are the ones that are investigated.

For Mixifer, we analyze an analogous case, namely the best differential trails
over two rounds. Those are the ones with two active cells that form an orbital in
𝜃 of the first round. So we have two nibbles in the same column with difference
values 𝑑0 and 𝑑1 at the input of 𝛾, that maps them both to the same difference 𝑑Δ.
The subsequent𝜃 acts as the identity and𝜌 and𝜋move them to different positions
before they arrive at the next 𝛾 layer. There, the two active nibbles map to output
differences 𝑑2 and 𝑑3. The remainder of the second round does not modify
the differential probability. So the super-box structure we consider consists of
two 𝛾 S-boxes, followed by two 𝛾 S-boxes. There is no mapping in between,
only the requirement that in the intermediate difference the two active cells are
equal. So the trails look like this: (𝑑0 , 𝑑1)

𝛾
→ (𝑑Δ , 𝑑Δ)

𝛾
→ (𝑑2 , 𝑑3). This means

that their differential probability is DP(𝑑0 , 𝑑Δ)DP(𝑑1 , 𝑑Δ)DP(𝑑Δ , 𝑑2)DP(𝑑Δ , 𝑑3).
Assuming independent rounds, they contribute to the super-box differential in
the following way:

DP((𝑑0 , 𝑑1) → (𝑑2 , 𝑑3)) =
∑
𝑑Δ

DP(𝑑0 , 𝑑Δ)DP(𝑑1 , 𝑑Δ)DP(𝑑Δ , 𝑑2)DP(𝑑Δ , 𝑑3) .

115

Chapter 5. Column-Parity Mixers

A single trail can have DP at most 2−8, as the maximum DP of our S-box is 2−2.
We have exhaustively checked for all 216 possible combinations of (𝑑0 , 𝑑1 , 𝑑2 , 𝑑3),
and the differential with the highest DP turned out to be the one where all 𝑑𝑖 are
all-1 (so F in hexadecimal). It has DP 2−8 + 6 × 2−12 that is the contribution of 7
trails, one dominant with DP 2−8 and 6 with DP each 2−12. This gives a DP for
the differential that is only a factor 1.375 higher than that of its dominating trail.

As a preliminary conclusion, it appears that the effect of clustering appears
to be smaller than for AES.

Impossible-differential cryptanalysis. It is well-known that every permutation
has many impossible differentials [BBS05]. For any input difference, there are
exactly 2𝑏−1 pairs and hence there can be only 2𝑏−1 output differences. However,
to the best of our knowledge no attacks have been reported that exploit that aspect.
Impossible-differential attacks exploit large classes of impossible differentials,
i. e., differentials with zero probability. Here we will discuss whether this can
be applied to Mixifer.

Let us consider a single-cell difference at the input of a round (called first

round):

▶ First round: 𝜃 maps the single active cell to a difference with three
additional affected columns and the subsequent 𝜌 moves the active cells
to different columns.

▶ Second round: 𝛾 transforms the difference values of the 13 active cells to
possibly different values. The subsequent 𝜃 adds affected columns. We
found that at this stage, all columns can be affected. The subsequent 𝜌 and
𝜋 steps just move the active cells around.

▶ Third round: 𝛾 transforms the difference values of the active cells to
possibly different values. Within each column, all possibilities can occur:
in the kernel or out of the kernel, all four the same 4, three the same 3 + 1,
2+2, 2+1+1 and all four different 1+1+1+1. The subsequent 𝜃 computes

116

5.6. The Mixifer Permutation

column parities over all columns and adds three affected columns for each
one. This leads to a state where each cell can be active or passive, with the
exception of an all-passive state. This remains to be the case after 𝜌 and 𝜋.

So a difference with a single active cell may lead to any (nonzero) truncated
difference after three rounds. If we consider fully specified patterns taking
into account the cell-difference values, we have verified that, when we apply
a difference 𝑎 to the serial composition of two S-boxes with the addition of an
offset in between, that this may lead to all possible nonzero differences for any
nonzero value 𝑎. So, even though for any stage of the computation there will
certainly exist (nontruncated) difference patterns that cannot occur, after 𝛾 of
the fourth round, it will be very hard to exploit them.

We treated the case of a difference pattern with a single active cell. If there is
more than one active cell, one may try to slow down diffusion by having the
pattern at the input of 𝜃 of the first round in the kernel. In that case, one would
apply a pattern at the input consisting of one or more orbitals. However, after
𝛾 of the first round, the difference values of the active cells belonging to the
same orbital depend on the absolute value of the state, and hence they are only
equal in a subset of all cases. So for the other cases that may occur and are hence
not impossible, there are actually more active cells present after 𝜃 and hence
diffusion is even faster.

We see that Mixifer has no exploitable impossible differentials that start from
a single-cell difference over more than 3 rounds. This is actually as good as
AES despite the larger number of cells, and we attribute it to the large average
diffusion of the column-parity mixer that we use.

Invariant attacks. Under invariant attacks, we consider rotational cryptanal-
ysis [KN10], slide attacks [BW99], invariant subspace attacks [LAAZ11], and
nonlinear invariant attacks [TLS16]. One property that these attacks share, is
that they can be defeated by appropriately choosing round constants [BCLR17].

117

Chapter 5. Column-Parity Mixers

We explicitly designed our round constants to fulfill all the relevant criteria,
which is why we conclude that there are no exploitable invariant attacks against
Mixifer.

5.6.4 The Number of Rounds

Recall that we aim for use cases such as XPX [Men16], where an adversary
can apply difference patterns across the complete input and can do inverse
permutation queries, and that we target a security level of 128 bits. Note that
this is different than for block ciphers where by default a security level equal to
the block length is claimed, leading to the absurd situation that attacks requiring
an adversary to query almost the full codebook can “break” a cipher, at least
from an academic perspective. Our security claim is compatible with the fact
that most modes do not achieve security above the birthday bound, that is at a
comfortable 128 bits for our permutation width.

Based on our investigations, we fix the number of rounds to 16 and believe
that this gives a comfortable safety margin for the following reasons:

▶ The best differential trails over 4 rounds have DP 2−92, so the best ones
over 12 rounds have an approximated DP of 2−276. In our best 2-round
differential trail, the DP is 2−8, while the best 2-round differential has DP
1.375× 2−8 ≈ 2−7.54. So clustering may lead to some loss, but even dividing
the exponent of the best trail DP by two would give 2−138, an unexploitable
value.

▶ For linear trails we have a maximum linear potential (square of the
correlation) over 4 rounds of 2−80, resulting in 2−240 over 12 rounds. This
is slightly less comfortable than the case of differential trails, but it is still
very large, even if a huge degeneration due to clustering would occur.

▶ The number of rounds for which structural attacks, such as integral
cryptanalysis and impossible differentials, still work, is strongly correlated

118

5.6. The Mixifer Permutation

with the number of rounds that it takes to achieve full diffusion. We have
illustrated this explicitly with impossible differentials. Specifically, we
claim that despite its larger state and more lightweight round function,
Mixifer achieves full diffusion about as fast as AES.

▶ The algebraic degree of the round function is 3, as is that of its inverse.
This already starts saturating after 5 rounds, so we do not expect there to
be any problems.

Of course every concrete cipher can only be considered secure after intensive
public scrutiny so we invite all members of the cryptographic community to
attack Mixifer.

5.6.5 Implementation Cost

Mixifer is designed for efficient constant-time implementations in hardware
and in software on 32-bit and 64-bit architectures. We provide two reference
implementations in C and an optimized assembly implementation for the (32-bit)
ARM Cortex-M3 and M4 microprocessors.

The first C implementation uses 4 uint64_ts to represent the state and
implements the round function in a very straightforward way. In a naive software
implementation like this, 𝛾 can be relatively computationally expensive. The
S-box needs to be computed for each cell individually. Even when one applies
the S-box to an entire row in parallel, bitmasks are typically required to separate
the four bits of a cell over separate registers. By selecting a rotation-symmetric
S-box and assuming a bitsliced state, this can be made more efficient, especially
on architectures such as those by ARM where shifts and rotations are cheap.
After loading our state, we take it to be organized as in Fig. 5.12.

The 𝑖th byte of a 32-bit word stores the 𝑖th bit for 8 cells, as the S-box can
then be computed in just 4 instructions per register. We also choose to interleave
adjacent cells over two words, as a word-rotation by one nibble is now only a
bytewise rotation by one bit and a swap of registers, which is free, instead of

119

Chapter 5. Column-Parity Mixers

having to do this bytewise rotation on two words. The second C implementation
uses this approach and represents the state with 8 uint32_ts.

16 columns
1 cell

4
ro

w
s

r0

r1

r2

r3

r4

r5

r6

r7

Figure 5.12: Bitsliced representation for 32-bit architectures. At the top is the
256-bit state, where every small rectangle is a bit. At the bottom are 8 32-bit
registers labeled r0 to r7, where every colored rectangle is a byte.

Chapter 6 provides more details on the microarchitectures, but on the ARM
Cortex-M3 or M4, we can compute 𝛾 with this representation in 32 single-cycle
instructions. On a 64-bit architecture, this could naturally be twice as efficient.
Computing 𝜃 takes 6 cycles for computing the parity, 17 cycles for calculating
the effect, and 8 cycles for adding it back to the state. 𝜋 can be implemented by
just renaming registers, and 𝜌 takes us 2 cycles per row, except for the last row
which is not rotated, so only 6 cycles in total. 𝜄 takes a single cycle.

All combined, our optimized assembly implementations needs 70 cycles for
a single round. Together with some overhead for a function call and for loading
and storing data, the full unrolled 16-round permutation runs in 1174 cycles, or
36.69 cycles per byte on the ARM Cortex-M4, as measured on an STM32F407
microcontroller. For ARM Cortex-M3, we measure 1175 cycles on an STM32L100

120

5.6. The Mixifer Permutation

microcontroller. The implementation uses only 44 bytes on the stack, excluding
the input. They are mostly to store callee-save registers.

Notably, the inverse permutation has the same memory requirements and
even a slightly higher speed, measuring 1126 cycles on the STM32F407.

All source code is put into the public domain and available at
https://github.com/Ko-/mixifer.

5.6.6 Comparing to Other Ciphers

To put our bounds and benchmarks into context, we compare the results to
some other permutations and ciphers. We aim to make this comparison fair by
only considering schemes for which there is an optimized implementation for
the ARM Cortex-M3 or M4. Aside from the usual speed and size numbers, we
would also like to somehow incorporate the quality of a round function into the
comparison.

Some schemes have many lightweight rounds while others have more
computationally demanding rounds, but need fewer of them to reach a certain
level of security. Some schemes are also more conservative than others with
regard to the number of rounds compared to the best known attacks. Moreover,
schemes target different security levels. All of that makes it hard to quantify
the notion of the quality of a round function in a meaningful way. Intuitively,
however, we believe that it would be interesting to look at the amount of security

that is gained per amount of work that has to be done.
Table 5.6 lists some of the results. Regarding security, we consider the weight

that a single round adds to the best known differential trail. In the table, the
weight is expressed as the −log2 of the maximum differential probability (DP).
Work is then quantified as the number of cycles per byte per round on these
Cortex-M microarchitectures. Of course these numbers do not reflect security
against different types of attacks, performance on different architectures, the
security margin, and so on.

121

https://github.com/Ko-/mixifer

Chapter 5. Column-Parity Mixers

AES [DR02] is a prime example of a cipher using an MDS matrix and with
strong bounds. For fair comparison, we also mention performance numbers
for a bitsliced implementation that does not use any secret-data dependent
lookup tables and is not vulnerable to cache attacks. Gimli [BKL+17] is a 384-bit
permutation with a much lighter round function which shows in its speed, but
also in the best known trails. We compare to Salsa20/20 [Ber08b] because it is
known to be very fast in software. The speed that is mentioned, is actually that
of ChaCha20 [Ber08a], which has comparable speed. However, to the best of
our knowledge, no bounds are known for ChaCha20 and Salsa20/20 does not
have an optimized implementation for the Cortex-M3 and M4. We compare to
Keccak- 𝑓 [400] and Keccak- 𝑓 [800] [BDPV11b] because they are known to have
very strong security guarantees against linear and differential cryptanalysis in
the form of a good bound on the weight of trails [MDA17]. The big gap in
performance is because Keccak- 𝑓 [800] is the smallest Keccak- 𝑓 that can fully
use 32-bit registers.

It is clear that Mixifer may not be as fast as Salsa20/20 or Gimli, but their
currently available bounds leave something to be desired, although they may
improve in the future. When one considers the amount of security that one gets
per amount of work that needs to be done, Mixifer stands out.

5.7 Conclusions and Future Work

We have generalized the mixing layer of the permutation of Keccak and showed
that column-parity mixers are an interesting alternative to MDS matrices.
They can be very lightweight mixing layers and they lend themselves well to
bitsliced implementations, even for nibble-oriented ciphers and permutations.
Additionally, we formulated a strategy to obtain strong bounds with respect to
truncated linear and differential cryptanalysis and demonstrated its effectiveness
by an exemplary permutation called Mixifer.

122

5.7. Conclusions and Future Work

Table 5.6: Comparison of performance on the Cortex-M3/M4 and bounds.

Name 𝑟
Speed (cycles/byte) Bound trails

Full /𝑟 − log2(max𝐷𝑃) /𝑟

AES bitsliced 10 50.52 [SS16c] 5.05 150 over 4 [DR02] 37.5
AES tables 39.97 [SS16c] 4.00
Gimli 24 21.81[BKL+17] 0.91 52 over 8[BKL+17] 6.5
Keccak- 𝑓 [400] 20 106 [BDH+] 5.3 92 over 6 [MDA17] 15.3
Keccak- 𝑓 [800] 22 48.02 [BDH+] 2.18 92 over 6 [MDA17] 15.3
Salsa20/20 20 13.88 [HRS16] 0.69 18 over 3 [MP13] 6
Mixifer 16 36.69 2.33 92 over 4 23

CPMs look promising, but there are still some interesting aspects that are
worth investigating. For instance, intuitively it makes sense that a sparser
parity-folding matrix means less diffusion and a cheaper implementation, but it
is less obvious what would be an ideal trade-off and how this relates to the trail
search space that needs to be covered. One can imagine that after some point,
there is not so much to be gained by making a parity-folding matrix denser,
especially when considering trails over many rounds.

For circulant parity-folding matrices, there exist interesting patterns after
one selects which columns should be affected given a single isolated active cell.
For example, consider the case where 𝑧(𝑥) = 𝑥+ 𝑥2 + 𝑥3 + 𝑥4. Then a single active
cell leads to four affected columns. However, with two active cells in adjacent
columns, there would be some destructive interference in the 𝜃-effect leading to
only two affected columns. In general, something similar can happen with other
parity-folding matrices and multiple odd columns. It is worth investigating
what is an optimal choice.

123

Chapter 5. Column-Parity Mixers

As another example, it would be interesting to know whether there exist
better transposition layers than a combination of row permutations and rotations.
Or, to learn what is the optimal ratio between ℓ , 𝑚, and 𝑛.

For Mixifer, we considered truncated trails and while we touched upon
the subject of trail clustering, more can be done. It would be interesting to
investigate this behaviour for more rounds, both for AES and for MDS-based
ciphers in general, as for Mixifer. We consider further research on clustering of
trails to be future work.

We are looking forward to see any future work on the subject of column-parity
mixers.

124

PART II

Optimized Implementations

Chapter 6
ARM Cortex-M

The first chapter of Part II describes how (cryptographic) software, and in particular

AES, can be optimized for the ARM Cortex-M line of embedded microprocessors. We

also provide a tool to assist with instruction scheduling and register allocation. The

original publication claimed that the masked implementation presented there is secure

against first-order power analysis [SS16c]. This claim has been removed as I no longer

believe that it holds. Instead, the implementation only provides first-order security in

the probing model [ISW03]. The implementation is left in as it serves as a baseline for

Chapter 9. For most implementations, this chapter presents slightly better results than

what was in the original publication.

6.1 Introduction

AES was published as Rĳndael in 1998 and standardized in FIPS PUB 197 in
2001. Highly optimized implementations have been written for most common
architectures, ranging from 8-bit AVR microcontrollers to x86-64 and NVIDIA
GPUs. See, for example, [BS08; KS09; OBSC10]. Implementing optimized AES
on any of these architectures essentially requires to start from scratch to find
out which implementation approach is going to be the most efficient. The past
decades have seen a large shift toward ARM architectures and while we have
seen efficient AES implementations for high-end processors used in modern
smartphones [BS12] and for older microprocessors used in smart cards [ABM04;
BBF+03], there is little to choose from for modern low-end embedded devices
and Internet-of-Things applications.

Sometimes an embedded device contains a coprocessor that can perform
AES encryption in hardware, but such a coprocessor is not always available. It

127

Chapter 6. ARM Cortex-M

makes a device more expensive and it can increase the power consumption of a
device. Simply compiling an existing implementation written in, for example,
the C programming language, is unlikely to produce optimal performance. Even
worse, embedded systems are typical targets for timing attacks, power-analysis
attacks, and other forms of side-channel attacks, so software for those devices
typically needs to include adequate protection against such attacks.

We fill some of these gaps by providing highly-optimized software imple-
mentations of AES for two of the most popular modern microprocessors for
constrained embedded devices, the ARM Cortex-M3 and the Cortex-M4. Our
implementations of AES-{128, 192, 256}-CTR are more than twice as fast as pre-
vious implementations. We also provide a single-block AES-128 implementation,
a constant-time AES-128-CTR implementation and a masked implementation
with two shares. All of them are the fastest of their kind. They are put into the
public domain and available at https://github.com/Ko-/aes-armcortexm.

The results of this chapter are not only interesting for stand-alone AES
encryption. In the CAESAR competition for authenticated encryption schemes1,
14 out of the 29 second-round candidates that were remaining at the time of the
original publication [SS16c], are based on AES or the AES round function. Our
implementations will be helpful to speed up those candidates on embedded
ARM microprocessors.

Organization of the chapter. In Section 6.2, we first discuss AES and give an
outline of the different implementation approaches that have been used so far.
We also provide an overview of the target architecture and what features we can
benefit from when optimizing software for speed. Section 6.3 then discusses our
fastest AES implementations, based on the T-tables approach, while Section 6.4
considers our constant-time bitsliced implementation. We report performance
benchmarks and provide a comparison to related work at the end of Sections 6.3
and 6.4.

1 https://competitions.cr.yp.to/caesar.html

128

https://github.com/Ko-/aes-armcortexm
https://competitions.cr.yp.to/caesar.html

6.2. Preliminaries

6.2 Preliminaries

6.2.1 Implementing AES

AES [DR02] is an iterated block cipher that operates on 128-bit blocks. Key sizes
of 128, 192, and 256 bits are supported. Depending on the key size, the cipher
has 10, 12, or 14 rounds, respectively. The nonlinear substitution layer consists
of the SubBytes step, where an 8-bit S-box is applied to each byte of the state.
The linear layer consists of ShiftRows and MixColumns, to provide diffusion.
In the beginning, between all rounds, and at the end, the AddRoundKey step
XORs the state with round keys that are derived from the main key during a key
schedule. MixColumns is omitted in the final round. In software, there are four
main implementation approaches:

▶ Traditional. All steps are implemented as is; typically SubBytes is imple-
mented through a 256-byte lookup table.

▶ T-tables. SubBytes, ShiftRows, and MixColumns are combined in 4 1024-
byte lookup tables. Each AES round then consists of 16 masks, 16 loads
from the lookup tables and 4 loads from the round keys, and 16 XORs.
This leads to very efficient implementations on platforms with a word
size of at least 32 bits. At the cost of extra rotations, only 1 lookup table
is required. This strategy was already suggested in the original Rĳndael
proposal [DR99]. Our fastest implementations in Section 6.3 are based on
this approach.

▶ Vector permute. The disadvantage of the T-tables approach is that key- and
data-dependent lookups open the door for timing attacks on architectures
with caches. See, for example, [Ber05a; OST06; TOS10]. Another approach
to implementing AES, that avoids such data-dependent lookups, uses
vector-permute instructions [Ham09]. However, such instructions are

129

Chapter 6. ARM Cortex-M

unavailable on our target platform, which is why we do not go into more
detail on this strategy.

▶ Bitslicing. Another approach that does not require lookup tables is
bitslicing, originally introduced for DES by Biham [Bih97]. The core idea
is that data is split over multiple registers, but that other blocks are used
to fill the registers. Multiple blocks can then be processed in parallel
in a single-instruction-multiple-data (SIMD) fashion. This approach is
especially beneficial for architectures with large registers. For AES, the
128-bit state is usually sliced over 8 registers, as this allows for an efficient
linear layer. Various papers describe bitsliced implementations of AES
on Intel processors [Kön08; Mat06; MN07]. At the time of the original
publication [SS16c], the implementation by Käsper and Schwabe from
2009 held the speed record [KS09], but meanwhile this has been further
improved by Park and Lee [PL18]. Our implementations in Sections 6.4
and 6.5 also use bitslicing.

6.2.2 ARM Cortex-M

The Cortex-M is a family of 32-bit processors by ARM meant for use in embedded
microcontrollers. They are designed to be cheap and to be energy efficient,
while still powerful enough to offer adequate performance in applications such
as automotive systems, medical instruments, the Internet of Things, or other
consumer products. As of 2015, over 10 billion of these processors have been
shipped [ARM15].

The Cortex-M3 was announced in 2004, while the Cortex-M4 is from 2010.
Both microprocessors have 16 32-bit registers, of which three are reserved for
program counter, stack pointer, and link register. The link pointer can be
pushed to the stack to free another register. Both microprocessors support
the ARMv7-M architecture and the Thumb-2 technology, but the Cortex-M4

130

6.2. Preliminaries

supports additional instructions for digital signal processing, i. e., the ARMv7E-
M architecture. However, we do not use these extensions.

Bitwise and arithmetic instructions take one cycle on these architectures,
except for divisions or writes to the program counter. Branches, loads, and stores
may take more cycles, which is why they can easily bottleneck the performance.
A distinguishing feature of the ARM architecture is the availability of barrel-
shifting registers. This means that we can do arithmetic on rotated or shifted
registers, without any additional cost for the rotation or shift.

We used the STM32L100C and STM32F407VG development boards. The first
comes with 256 KB of flash memory, 16 KB of RAM, and 4 KB of EEPROM. It
can run a Cortex-M3 core at up to 32 MHz. The second is more powerful and
has a 168 MHz Cortex-M4 core, 1024 KB of flash memory, 192 KB of RAM, and a
true-random-number generator.

6.2.3 Accelerating Memory Access

Memory access can be expensive in terms of CPU cycles. Additionally, there
are a lot of ways to introduce penalty cycles. Carefully optimized software
therefore avoids as many potential delays as possible. Here we list a number of
generic strategies related to memory access to reduce the cycle count of programs
running on the Cortex-M3 and M4. A siginifcant portion of our speedups of
AES stems from a combination of these strategies.

Flash. The instructions and tables are typically stored in flash memory. Access-
ing flash can introduce a number of wait states, depending on the relative clock
frequency of the microprocessor and the memory chip. For our development
boards, the STM32L100C and STM32F407VG, STMicroelectronics describes in
its documentation when it is possible to have zero wait states [STM20, p. 59,
tbl. 13][STM19, p. 80, tbl. 10]. For example, on the STM32L100C, the CPU clock
can only run at 16 MHz for a supply voltage of 3.3 V. To be able to compare

131

Chapter 6. ARM Cortex-M

the performance of implementations across different devices or boards, it is
important to be in this scenario.

RAM. Something similar holds for accessing RAM, where the stack is stored.
On the STM32F407VG, four different regions of RAM are available: SRAM1,
SRAM2, SRAM3, and CCM. In our case it turned out to be fastest to use only SRAM1.

Alignment. The Cortex-M3 and M4 support Thumb-2 technology, which means
that 16-bit and 32-bit encodings of instructions can freely be mixed. However,
consider the case that a 16-bit instruction starts at a word-aligned address,
followed by one or more 32-bit instructions. The 32-bit instructions are then no
longer word-aligned, which may cause penalty cycles for the instruction fetcher,
which fetches multiple instructions at a time. In this case, forcing the use of
a 32-bit encoding for the first instruction by adding a .w suffix can improve
the instruction alignment and reduce the cycle count. Our implementations
take this into consideration. Penalty cycles may also be introduced when
branching to addresses that are not word-aligned, when loading from memory
at addresses that are not word-aligned or when not loading full words from
memory. Implementers need to take care of the alignment themselves. Our
implementations carefully avoid these penalty cycles.

Pipelining loads. Most str instructions take 1 cycle, because of the availability
of a write buffer, but ldr instructions generally take at least 2 cycles. However, 𝑛
ldr instructions can be pipelined together to be executed in 𝑛 + 1 cycles if there
are no address dependencies and the program counter remains untouched. An
instruction such as ldm pipelines all of its loads together, but when it is followed
by an ldr, those will not be pipelined together. For our implementations, we
pipeline as many loads as possible.

132

6.3. Making AES Fast

Caches and prefetch buffers. The Cortex-M3 and M4 by themselves do not have
any caches. However, caches can be added in embedded devices or development
boards to boost the performance. For example, the STM32F407VG contains
64 128-bit lines of instruction cache memory and 8 128-bit lines of data cache
memory [STM19, p. 73]. It also contains an instruction prefetch buffer to reduce
the experienced number of wait states when a microprocessor running at a high
clock frequency accesses flash memory to fetch 128 bits of instructions [STM19,
p. 82]. The STM32L100C supports a similar prefetch buffer when 64-bit flash
access is enabled [STM20, p. 59].

Data location. When one wants to read data that is stored in flash memory, one
first needs to load the address of the data block before one can load the data itself.
However, when data is located within 4096 bytes of the value of the program
counter, the first load instruction can be replaced by an adr pseudo-instruction
that is really an addition or subtraction of the program counter, which may save
one cycle, depending on whether the load could be pipelined. It is therefore
useful to store data close to where the data is being used.

6.3 Making AES Fast

Ever since Rĳndael was standardized as AES, a lot of effort has been put into
fast and secure software implementations for a large range of platforms and
architectures. Numerous optimization tricks have been suggested to improve the
performance. For T-table-based implementations, the majority is summarized
in [BS08]. In this section we discuss which strategies are useful to apply on the
Cortex-M3 and M4.

Using the T-table-based approach, AES-128-CTR can typically be imple-
mented in 720 instructions: 208 loads, 4 stores, 160 shifts, 176 masks, 168
XORs and 4 others [BS08]. Thanks to ARM’s barrel-shifting registers, we can
do combined shifts and masks, saving 160 instructions. [BS08] also mentions

133

Chapter 6. ARM Cortex-M

scaled-index loads and second-byte instructions. A scaled-index load is the option
to shift the offset of a load instruction for free, while a second-byte instruction
allows for extracting the second byte of a register in one instruction. Both
features are supported by our architecture, but as all shifts are already fully
subsumed, these optimizations no longer yield any additional advantage.

Byte loads and two-byte loads could save another 8 instructions by not requiring
an additional mask, but loads that are not word-aligned cause a penalty cycle,
so for speed these optimizations are of little use. Other potential optimization
strategies, such as combining masks and inserts or loads and XORs, are not possible
in a single instruction on these platforms. Being able to do byte extraction via

loads allows to exchange arithmetic instructions for load instructions, but loads
are either as fast or slower, so this strategy gives no advantage either.

With round-key recomputation, only one out of four round-key words is stored
for all rounds except the first. During encryption, the other parts of the round
keys can be recomputed on the fly, exchanging 30 loads for 30 XORs. However, in
our case the loads can be fully pipelined and the round keys from the previous
round would not fit into registers anymore, so this would also not reduce the
total number of cycles. Round-key caching, where all round keys are kept in
registers when encrypting multiple blocks, would require even more registers.
Another technique called padded registers exists, where a 32-bit value is stored in
a 64-bit register in such a way that combining shifts and masks can be done a bit
more cleverly. However, our registers are too small to use anything like this.

However, counter-mode caching helps to save another 81 instructions in the
main loop. In counter mode, for 256 consecutive blocks, only 1 byte of the input
changes. This means that through the first and second AES round, computations
that do not depend on this one byte can be cached and reused. Starting from
the third round, everything will depend on all input bytes. While there is some
additional overhead involved in storing and retrieving the cached values, this
trick already leads to a speedup when only 2 blocks are processed.

134

6.3. Making AES Fast

6.3.1 Our Implementations

Our implementations of AES-128 encryption, AES-128-CTR, AES-192-CTR, and
AES-256-CTR use one 1024-byte lookup table. The extra rotates that this would
normally cause come for free thanks to ARM’s barrel shifting registers. Using
four tables would save another 40 1-cycle instructions in the key schedule, and
16 1-cycle instructions in the final round for encryption, but as there is typically
little memory available on microcontrollers and the improvement in speed
is only marginal, we decided that this trade-off was not worth it. AES-128
decryption needs two 1024-byte lookup tables. On the other hand, the 16 mask
instructions in the final round are no longer required.

Key expansion is performed separately, as the round keys can be reused
for multiple blocks. In our implementation of counter mode, there is a 32-bit
counter and a 96-bit nonce. The reason is that then we do not have to deal with
a carry from the counter and a conditional add for the second counter word,
which gives another small speedup. We consider a 32-bit counter, providing a
maximum stream length of 232 · 16 = 68 719 476 736 bytes, to be large enough in
a typical microcontroller environment.

The performance of our speed-optimized implementations is summarized
in Table 6.1. All results are averages over 10000 runs with random keys, inputs,
and, if applicable, nonces. For encryption in counter mode, the number of cycles
reflects the average number of cycles per block when processing 256 blocks, or
4096 bytes. Loops are fully unrolled, so the code size can be reduced drastically
with only a small performance penalty. Note that data in ROM is typically
shared by key expansion and encryption/decryption, so it has to be in memory
only once. Under RAM usage, I/O refers to the amount of RAM that is required
to store the input and output for the functions, e. g., 192 + 2𝑛 means that we
require 4 bytes for the counter, 12 for the nonce, 176 for all round keys, 𝑛 for our
𝑛-byte input, and 𝑛 for the 𝑛-byte output. Again, I/O data is typically shared
by key expansion and encryption/decryption and the same stack space can be

135

Chapter 6. ARM Cortex-M

reused for the encryption/decryption function call. It turns out that the same
code usually runs in slightly more cycles on the Cortex-M3, which we cannot
really explain.

Table 6.1: Performance of unprotected AES on Cortex-M.

Algorithm
Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

AES-128 key exp. enc. 249.8 244.9 742 1024 176 32
AES-128 key exp. dec. 1031.6 971.2 2978 2048 176 176
AES-128 one block enc. 637.5 634.7 1970 1024 176 + 2𝑛 40
AES-128 one block dec. 640.5 636.3 1974 2048 176 + 2𝑛 40
AES-128-CTR 531.8 527.9 2128 1024 192 + 2𝑛 68
AES-192 key exp. 232.9 232.2 682 1024 208 32
AES-192-CTR 651.0 644.0 2512 1024 224 + 2𝑛 68
AES-256 key exp. 310.8 309.9 958 1024 240 28
AES-256-CTR 767.0 760.7 2896 1024 256 + 2𝑛 68

6.3.2 Comparison to Previous Implementations

There are few publicly available AES implementations optimized for the Cortex-
M3 and M4:

▶ In the SharkSSL crypto library v2.4, a speed of 1066.7 cycles per block is
claimed for AES-128-ECB on the Cortex-M3.2 CTR mode is unavailable.

▶ A company called Cryptovia sells an implementation that does AES-128
on a single block in 1463 cycles, also on the Cortex-M3.3

2 https://realtimelogic.com/products/sharkssl/Cortex-M3/

3 http://cryptovia.com/cryptographic-libraries-for-arm-cpu/

136

https://realtimelogic.com/products/sharkssl/Cortex-M3/
http://cryptovia.com/cryptographic-libraries-for-arm-cpu/

6.3. Making AES Fast

▶ The latest version of mbed TLS,4 formerly known as PolarSSL, contains
a table-based AES-128-CTR implementation that takes 1247.4 cycles per
block on the M3, while AES-128 key expansion takes 41 545 cycles.5

▶ NXP hosts the AN11241 AES library,6 but its implementation is very slow.
AES-128-ECB runs in 4179.1 cycles per block on the M3, while the AES-128
key expansion takes 1089 cycles.5

▶ The fastest implementation currently listed by the FELICS benchmarking
framework [DCK+15] encrypts a single block with AES-128 in 1816 cycles
on a Cortex-M3. The fastest key scheduling takes 724 cycles.7

We therefore claim that our CTR-mode implementations are about twice as
fast as previous implementations. We also require fewer cycles than optimized
implementations for older yet similar ARM architectures [ABM04], even though
in [ABM04] heavy use is made of the fact that the full lookup tables fit in the
data cache on a StrongARM-1110, which does not hold for our platforms.

6.3.3 Benchmarking with FELICS

The FELICS framework [DCK+15] has been proposed as an open system to
benchmark the performance of implementations of lightweight cryptographic
systems on three different microprocessors, one of them being the ARM Cortex-
M3. Cycle counts and memory usage are measured for three usage scenarios.
Scenario 0 deals with single-block encryption, where the round keys are stored
in RAM. In scenario 1, 128 bytes are encrypted in CBC mode. In scenario 2, 128
bits are encrypted in CTR mode.

4 https://tls.mbed.org/

5 We used gcc -O3 -funroll-loops -fno-schedule-insns with GCC 6.1.1 for these benchmarks,
the best set of compiler flags we could find, based on all sets that are tried in the SUPERCOP
benchmarking framework.

6 https://www.nxp.com/docs/en/application-note/AN11241.zip

7 AES_128_128_V06 in scenario 0 with -Os and with -O3, respectively.

137

https://tls.mbed.org/
https://www.nxp.com/docs/en/application-note/AN11241.zip

Chapter 6. ARM Cortex-M

This choice of scenarios means that our implementation needs to be adapted
to fit in the framework. In particular, counter-mode caching can no longer be
used and needs to be removed, which impacts the performance. Furthermore,
the decryption algorithm and decryption key expansion are now required as
well in scenarios 0 and 1. What is even more significant is that the FELICS
framework does not set the number of wait states, which means that a load from
memory will cost more than 2 cycles at the maximum clock frequency, greatly
inflating the total cycle counts. The reported cycle counts are therefore biased
toward implementations with fewer load instructions.

The framework reports 1641 cycles for our encryption in scenario 0 and 578
cycles for our key schedule. Although this is still faster than previous results,
the margin is smaller. This also holds for scenarios 1 and 2.

6.4 Protecting against Timing Attacks

While the availability of caches allows for speedups on platforms with relatively
slow memory, it also makes table-based AES implementations vulnerable to
cache-timing attacks [Ber05a; Koc96]. On our target platforms, it is possible
to simply disable the caches when performing cryptographic operations, but
it is useful to have a constant-time implementation that does not depend
on this ability. Moreover, this implementation serves as a step toward the
masked implementation. A popular technique for writing a constant-time AES
implementation that is still reasonably fast, is applying bitslicing.

Bitslicing is often explained as a technique where every bit of the state
is stored in a separate register, such that we can do operations on the bits
independently and such that we can process 32 blocks in parallel on 32-bit
machines. However, in the case of AES this is not the fastest way to bitslice,
as most operations are byte-oriented. Full bitslicing would also increase the
amount of registers needed to store the state by a factor of 32. There are very few
architectures that have enough registers to keep the bitsliced state in registers,

138

6.4. Protecting against Timing Attacks

so there would be a lot of overhead in storing and loading data to other types of
memory.

Könighofer suggested in [Kön08] to byteslice and to process 4 blocks in parallel
on an architecture with 64-bit registers. Note that this only benefits a mode of
operation that allows for parallel encryption, such as CTR mode. Käsper and
Schwabe were able to process 8 blocks in parallel using 128-bit registers [KS09].
Unfortunately, the Cortex-M3 and M4 only have 32-bit registers, so we can only
process 2 blocks in parallel while still retaining an efficient implementation of
the linear layer.

6.4.1 Our Implementation

After key expansion, the round keys are stored in their bitsliced represen-
tation. To transform to bitsliced representation, we require 12 SWAPMOVE
operations [MPC00].

SWAPMOVE(a,b,n,n) {

t = ((a ≫ n) ⊕ b) & m
b = b ⊕ t
a = a ⊕ (t ≪ n)

}

Due to ARM’s barrel shifter, we can implement SWAPMOVE in just 4 1-cycle
instructions, which gives a transformation overhead of 48 cycles.

eor t, b, a, lsl #n

and t, m

eor b, t

eor a, a, t, lsr #n

During encryption, the AES state is first transformed to bitsliced representation.
AddRoundKey is then again just a matter of XORing the bitsliced round keys
with the bitsliced state.

For SubBytes, a lot of research has been done on an efficient hardware
implementation of the AES S-box [Can05]. These results are also very useful

139

Chapter 6. ARM Cortex-M

for bitsliced software implementations. Boyar and Peralta found a circuit with
only 115 gates [BP10], which was later improved to 113: 32 AND gates, 77 XOR
gates, and 4 XNOR gates. At the time of the original publication [SS16c], this
was the smallest known implementation, which is why we used it as a basis
for our implementation. With only 14 available registers, it is impossible to
implement the S-box directly in 113 instructions. We need more instructions
to deal with storing values on the stack or with recomputation of values. We
wrote an ad-hoc combined instruction scheduler and register allocator that is
tailored to our microprocessors. Although recently even smaller circuits have
been found [ME19; RTA18], we have examined these and they do not lead to
faster results on Cortex-M microcontrollers, because of the use of multiplexer
gates and the requirement for more loads and stores.

Scheduling. Both instruction scheduling and register allocation are hard
problems, as is the combined problem. Compilers usually implement a graph
coloring algorithm and/or linear-scan allocation. They aim to schedule well
on average, but do not necessarily generate the most efficient assembly for a
specific part of code.

Existing compilers do not provide a lot of options to play with different
scheduling and allocation strategies, which is why we decided to write an
ARM-specific instruction scheduler and register allocator. This allows us to
focus on ARM’s three-operand instructions and to try several approaches. We
aim to minimize the number of loads and stores and the usage of the stack. We
first reschedule instructions to reduce the size of the active data set, by pushing
instructions down based on their left-hand side and by pushing instructions
up based on their right-hand side. Then we allocate registers in a greedy
fashion, where we insert loads and stores when necessary and try to leave
the output in registers. A more thorough overview of the tool is provided
in [Sto16a], including a comparison against the compilers GCC, Clang, and the
ARM Compiler.

140

6.4. Protecting against Timing Attacks

Our tool is nondeterministic because of hash randomization in Python, so we
try several scheduling strategies multiple times and only use the best result. With
our scheduler we are able to compute the AES S-box in 145 instructions: the 113
original operations, 16 loads and 16 stores. It is unknown whether this is optimal.

ShiftRows on a bitsliced state can be computed very efficiently on modern Intel
CPUs using 8 SSSE3 byte-shuffling instructions [KS09]. However, something like
this is unavailable on the Cortex-M3 and M4. We use the ubfx and uxtb bitfield
instructions, together with eor on shifted registers, to compute ShiftRows in
8 · 13 = 104 1-cycle instructions. The code below performs ShiftRows on r9,
while r12 and r5 are used as temporary registers.

uxtb r12, r9

ubfx r5, r9, #14, #2

eor r12, r12, r5, lsl #8

ubfx r5, r9, #8, #6

eor r12, r12, r5, lsl #10

ubfx r5, r9, #20, #4

eor r12, r12, r5, lsl #16

ubfx r5, r9, #16, #4

eor r12, r12, r5, lsl #20

ubfx r5, r9, #26, #6

eor r12, r12, r5, lsl #24

ubfx r5, r9, #24, #2

eor r9, r12, r5, lsl #30

In contrast, the barrel shifters allow us to compute MixColumns in just 27
eor instructions on shifted registers, which is even more efficient than in [KS09].

To update the counter for the next blocks, one can either store the bitsliced
representation and operate on this, or one can use the original representation
and transform this to bitsliced representation every two blocks. While the first
may appear to be faster, we implemented both and it turned out that the latter is
in fact more efficient. This is due to overhead caused by the limited way in which
you can do conditional execution with IT-blocks on these microprocessors.

141

Chapter 6. ARM Cortex-M

Table 6.2 contains performance benchmarks of our implementation. Again,
speed is measured as the average number of cycles per block when encrypting
256 consecutive blocks, which explains the decimal for the encryption. The
amount of cycles is exactly equal for all 10 000 combinations of random nonces,
keys, and inputs that we tried. We see a slowdown of roughly a factor 3
compared to our previous implementation. Note, however, that when one can
disable the caches during the AES execution or when caches are not available
at all, our previous faster implementations are also constant-time and should
be favored. We verified that after disabling caches, the cycle counts are exactly
equal for random combinations of inputs and keys. There is little related work
that would make a fair comparison.

Table 6.2: Performance of constant-time AES on Cortex-M.

Algorithm
Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

AES-128 bitsliced
key expansion

1024.8 1021.9 3434 1036 368 184

AES-128-CTR
bitsliced constant-time

1618.6 1616.6 11 806 12 368 + 2𝑛 104

6.5 Protecting against Side-Channel Attacks

Microcontrollers are typical targets for side-channel attacks such as differential
power analysis or differential electromagnetic analysis. A well-known coun-
termeasure against first-order side-channel attacks that is used in practice is
Boolean masking, where a secret intermediate value 𝑎 is split into two statistically
independent shares, i.e., 𝑟𝑎 and 𝑎̄ = (𝑎 ⊕ 𝑟𝑎), where 𝑟𝑎 is called a random mask.
Linear operations can be computed on both shares independently. After a linear

142

6.5. Protecting against Side-Channel Attacks

operation, the shares can be XORed together to unmask the result. Nonlinear
operations are more difficult to mask securely. Trichina suggested the following
provably secure method to mask 𝑎 · 𝑏 [Tri03], where 𝑎̄ = (𝑎 ⊕ 𝑟𝑎), 𝑏 = (𝑏 ⊕ 𝑟𝑏),
and 𝑟𝑎 , 𝑟𝑏 , 𝑟 are random masks:

((𝑎̄ · 𝑏) ⊕ ((𝑟𝑎 · 𝑏) ⊕ ((𝑟𝑎 · 𝑟𝑏) ⊕ 𝑟))) ⊕ (𝑟𝑏 · 𝑎̄).

This means that every AND operation requires 4 AND operations, 4 XOR operations,
and 1 load (of 𝑟) to mask.

We added first-order Boolean masking using Trichina gates to our constant-
time bitsliced implementations to find out how much this additional security
would cost on common microprocessors.

6.5.1 Our Implementation

To generate the masks, we need a source of randomness. The STM32F407VG
contains a random number generator (RNG) that guarantees a new 32-bit
random word every 40 periods of the RNG clock. In the case of AES, 8
random words are required to mask the input, as two blocks are processed
in parallel, and 320 random words are required for a single encryption, as
SubBytes contains 32 AND operations and is executed in all 10 rounds. While
interleaving randomness generation and executing instructions can decrease the
waiting time, the performance of the implementation will greatly depend on the
performance of the RNG and the relative clock frequency between the core and
the RNG.

All other operations are linear, so at least a factor of 2 slowdown can be
expected there. However, because the size of the active data set doubles and will
not fit in 14 registers anymore, a lot of overhead is created by additional loads
and stores. Our scheduler manages to generate a securely masked bitsliced
SubBytes implementation in 2 · 83 + 4 · 32 = 294 XORs, 4 · 32 = 128 ANDs, 99 stores
and 167 loads, that are pipelined as much as possible. Once more, the speed

143

Chapter 6. ARM Cortex-M

is measured as the average number of cycles per block when encrypting 256
consecutive blocks.

Table 6.3: Performance of masked constant-time AES on Cortex-M.

Algorithm
Speed (cycles) ROM (bytes) RAM (bytes)

M3 M4 Code Data I/O Stack

AES-128-CTR
masked constant-time

N/A 8727.6 39 224 12 368 + 2𝑛 1584

The performance of the final implementation is summarized in Table 6.3.
Note that of these 8727.6 cycles per block, 3439.5 are spent on generating random
words and pushing them to the stack, while all the rest takes 5288.1 cycles per
block. A faster RNG could significantly boost the total speed. Of the 1584 bytes
on the stack, 1312 are taken by the 328 random words.

6.5.2 Comparison to Previous Implementations

Balasch, Gierlichs, Reparaz, and Verbauwhede [BGRV15] showed at CHES
2015 that adding first-order Boolean masking with Trichina gates slows the
implementation down by roughly a factor of 5 on the Cortex-A8. On the
Cortex-M4, we see something similar compared to the unmasked bitsliced
implementation, with a factor 6.0, although a faster RNG could reduce this to
almost a factor of 3.5. Furthermore, we require less randomness because we
based ourselves on the 113-gate SubBytes implementation.

Goudarzi and Rivain [GR17] investigated the performance of different
approaches to higher-order masking based on the ISW masking scheme [ISW03]
by implementing masked versions of AES and PRESENT on the ARM7TDMI-S
microprocessor, a somewhat older architecture from 2001 that is still widely
deployed. For first-order masking, their fastest implementation takes 49 329

144

6.6. Conclusion and Outlook

cycles [GR17, tbl. 16, standard AES with parallel Kim-Hong-Lim S-box, 2 shares],
which is a factor 5.6 more than ours, but that comparison is not entirely fair as
we do not support higher-order masking. However, instruction timings appear
to be similar between the two architectures.

6.6 Conclusion and Outlook

This chapter presented various speed-optimized AES software implementations
for multiple use cases, including timing-attack protections, for the ARM Cortex-
M3 and M4. All of them are the fastest of their kind. Additionally, we provide an
ARM-specific instruction scheduler and register allocator that is of independent
interest to optimize other software for these platforms. All software is put into
the public domain, which also may benefit the performance of (AES-based)
CAESAR candidates on modern embedded microcontrollers.

145

Chapter 7
RISC-V

This chapter describes how cryptographic software can be optimized for RISC-V, a

popular open instruction-set architecture. In particular, the focus lies on AES, ChaCha,

Keccak- 𝑓 , and arbitrary-precision arithmetic on the RV32I microarchitecture. The

results are then compared to results on an ARM Cortex-M4. In comparison to the

original publication [Sto19], changes are mostly related to formatting and to better reflect

the current status of the ongoing RISC-V project.

7.1 Introduction

The RISC-V project started out in 2010 as a research project at the University of
California, Berkeley. The goal was to design an open-source reduced instruction
set that was free and practical to use by academics and industry. Today, it
comprises an association with hundreds of member organizations, including
major industry partners such as Google, Qualcomm, and Samsung. The fact that
many large companies are joining this efforts indicates that RISC-V might await
a bright future. In particular, no longer having to pay any license fees makes it an
attractive alternative and a serious competitor to ARM-based microcontrollers.

Together, the association’s members developed a specification for the RISC-V
instruction-set architecture [RIS19]. RISC-V targets both embedded 32-bit
devices and larger 64-bit, and even 128-bit devices. While some parts of the
specification are still in development, the most important parts have been frozen
such that hardware and software could be implemented. Compilers, debuggers,
and software libraries with RISC-V support have been around for several years.1

1 https://riscv.org/software-status

147

https://riscv.org/software-status

Chapter 7. RISC-V

Boards with fully functional RISC-V SoCs have been commercially available
since 2016.2

There exist several open-source RISC-V CPU designs designed to be easily
extensible. This makes the platform an ideal candidate for software-hardware
co-design, as was exemplified by a recent implementation of the hash-based signa-
ture scheme XMSS [WJW+18]. The underlying hash function, SHA-256 [NIS15a],
was implemented in hardware to increase the performance of the full signature
scheme. However, it is not always possible to “simply” add a hardware copro-
cessor of a required cryptographic primitive. In practice, one may have to deal
with whatever hardware is available or a developer might lack the capabilities
to modify a hardware implementation. More importantly, adding a coprocessor
to an ASIC will most likely increase the production cost of that chip. In order to
make any trade-off decision for software-hardware co-design meaningful, some
numbers need to exist to have an idea about the cost of software implementations.
To the best of our knowledge, we are the first to provide such numbers for
cryptographic primitives.

We explain how AES-128, ChaCha20, and Keccak- 𝑓 [1600] can be imple-
mented efficiently on RISC-V and we optimize 32-bit RISC-V assembly imple-
mentations. We also study the speed of arbitrary-precision addition, schoolbook
multiplication, and Karatsuba multiplication for unique and redundant or
reduced-radix integer representations. We then draw a parallel to the ARM
Cortex-M line of microprocessors and we show how architectural features such
as the availability of native rotation instructions, a carry flag, and the number of
available registers impact the performance of these primitives. We continue by
estimating what the performance would be if a RISC-V core were to be extended
with these features.

In Section 7.2 we first explain details about the RISC-V instruction set and
our benchmarking platform. Sections 7.3 through 7.5 cover implementation
strategies that are specific to AES, ChaCha, and Keccak, respectively. Arbitrary-

2 https://www.sifive.com/boards/hifive1

148

https://www.sifive.com/boards/hifive1

7.2. The RISC-V Architecture

precision integer arithmetic is discussed in Section 7.6. Finally, in Section 7.7
we compare the relative performance of cryptographic primitives to that on the
ARM Cortex-M4 and estimate what the performance would be with RISC-V
extensions for several architectural features.

Our software implementations are open-source and placed into the public
domain. They are available at https://github.com/Ko-/riscvcrypto.

7.2 The RISC-V Architecture

The specification of the RISC-V instruction-set architecture (ISA) is split into a
user-level ISA and a privileged ISA. The privileged ISA specifies instructions
and registers that are useful when creating, for example, operating systems, but
for our purpose we only need to consider the user-level ISA. The user-level ISA is
divided in a base ISA and in several standardized extensions that are discussed
in Section 7.2.2. At the time of writing, the base ISAs for 32-bit and 64-bit
machines, called RV32I and RV64I respectively, have been frozen at version 2.1.
A base ISA for 128-bit machines (RV128I) and a smaller 32-bit variant with fewer
registers (RV32E) still have draft status. In this work we focus on the 32-bit
RV32I instruction set.

7.2.1 The RV32I Base Instruction Set

RV32I specifies 32 32-bit registers named x0 to x31. However, not all of them
can be used freely. The registers have aliases that make their purpose more clear.
For example, x0 is also known as zero: writes to it are ignored and it always
reads as the value 0. The others are: ra (return address, x1), sp (stack pointer,
x2), gp (global pointer, x3), tp (thread pointer, x4), a0-a7 (function arguments
and return value), s0-s11 (saved registers), and t0-t6 (temporary registers).
That means that 27 registers can be used without complications and maybe a
few more depending on the environment. Only sp and s0-s11 are callee-saved.

149

https://github.com/Ko-/riscvcrypto

Chapter 7. RISC-V

As a true RISC, the number of available instructions is fairly limited. We
therefore include a concise but complete overview in this section. All instructions
are described in more detail in the official specification [RIS19].

Arithmetic and bitwise instructions have three register operands, or two
register operands and a sign-extended 12-bit immediate, denoted by the I suffix.
The following self-explanatory instructions are available: ADD, ADDI, SUB, AND,
ANDI, OR, ORI, XOR, and XORI. There is no SUBI, because that is just an ADDI with
a negative immediate. Similarly, there is no real NOT instruction, because it
can be implemented with XORI and −1 as immediate. NOT is recognized as a
pseudo-instruction by assemblers.

Regarding shifts, the following instructions exist: SLL, SLLI, SRL, SRLI, SRA,
and SRAI. The naming convention that is used here is Shift (Left or Right) (Logical
or Arithmetic) (Immediate). Note that the base ISA does not specify a rotation
instruction.

To load a value from memory, LW, LH, LHU, LB, and LBU can be used. The
W stands for word (32 bits), the H for half-word (16 bits), and the B for byte (8
bits). With LH and LB, the value is assumed to be signed and will therefore be
sign-extended to a 32-bit register. LHU and LBU are their unsigned counterparts
that perform zero-extension instead of sign-extension. To store a register value
to memory, one can use SW, SH, and SB. For all load and store instructions, the
base address needs to be in a register. An immediate offset can be specified
in the instruction. For example, LW a1, 4(a0) loads a word from a0 + 4 in
a1. It is not possible to specify the offset in a register or to automatically
increment/decrement the address.

The JAL and JALR instructions specify unconditional jumps. The target
address can be specified relative to the program counter (JAL) or as an absolute
address in a register (JALR). On the other hand, BEQ, BNE, BLT, BLTU, BGE, and
BGEU denote conditional jumps based on a comparison. Their first two operands
are registers of which the values are compared. The U suffix denotes that the

150

7.2. The RISC-V Architecture

operands are interpreted as unsigned values for the comparison. The third
operand specifies the destination address relative to the program counter.

It is also possible to compare without branching. The SLT, SLTU, SLTI, and
SLTIU instructions set a destination register to one if the second operand (a
register) is less than (signed or unsigned) the third operand (either a register or
an immediate). Otherwise, the destination register is set to zero.

The LUI (load upper immediate) andAUIPC (add upper immediate to program
counter) instructions can be used to set values larger than 12 bits in a register.

Finally, for the sake of completeness, there are specialized instructions to
deal with synchronization (FENCE), to call an operating system (ECALL), to signal
debuggers (EBREAK) and to hint the microarchitecture (HINT). We will not use
them.

7.2.2 Standardized Extensions

A RISC-V core has to implement a base ISA, and optionally it can implement
one or several standardized extensions to the instruction set. Most extensions
are denoted by a single letter. The extensions with a frozen specification are M

(with instructions for integer multiplication/division), A (atomic instructions),
F (single-precision floating point), D (double-precision floating point), Q (quad-
precision floating point), C (compressed instructions), Zicsr (control and status
registers), Zifencei (instruction-fetch fence), and Ztso (total store ordering).

Other extensions, such as those for bit manipulation, vector instructions, and
user-level interrupts still have draft status. To the best of our knowledge the
extensions in draft status have not yet been implemented by any commercially
available core.3

3 https://riscv.org/risc-v-cores

151

https://riscv.org/risc-v-cores

Chapter 7. RISC-V

7.2.3 Benchmarking Platform

We use a HiFive1 development board as our benchmarking platform, as they are
relatively easily available. This contains the FE310-G000 SoC [SiF17] with an E31
core [SiF18]. The core implements the RV32IMAC instruction set, i. e., the RV32I
base ISA with the extensions for multiplication/division, atomic instructions,
and compressed instructions. Of these, only the M extension is relevant to us.

The RISC-V specification does not specify how long instructions take to
execute or what kinds of memory are available. This is left open to the hardware
core implementer. Benchmarks across different RISC-V cores therefore need to
be compared with caution. To provide more insight, we briefly describe some
characteristics of this particular RISC-V core.

The E31 is designed as a 5-stage single-issue in-order pipelined CPU that
runs at 320+ MHz, although the PLL clock generator has an output of at most
384 MHz. The core has support for up to 64 KiB of DTIM memory that is used
as RAM, but the HiFive1 only has 16 KiB. Outside of the core, there is another
16 MB of QSPI flash memory. To accelerate instruction fetches from the flash
memory, the E31 comes with 16 KiB of 2-way instruction cache.

Most instructions have a result latency of a single cycle. There are a few
exceptions. For example, word-loads have a result latency of 2 cycles with a
cache hit. With a cache miss, it highly depends on the relative clock frequency
of the flash controller compared to the core. Half-word-loads and byte-loads
have a result latency of 3 cycles in the event of a cache hit. Misaligned DTIM
accesses are not allowed and result in a trap signal.

The E31 has an elaborate branch predictor, consisting of a branch target
buffer, a branch history buffer, and a return address stack. Correctly predicted
branches should suffer no penalty, while wrong guesses receive a penalty of 3
cycles.

The RISC-V specification describes a 64-bit increasing cycle counter that
is accessible through two CSR registers. This can be used for accurate bench-

152

7.3. AES

marking of code. We aim to unroll the code as much as possible as long as
the code still fits in the instruction cache. Tables and constants are stored in
the DTIM memory. This way, we manage to get very consistent measurements.
Occasionally, a measurement ends up taking much longer than expected. These
outliers are ignored.

7.3 AES

32-bit software implementations of AES usually fall into two categories, depend-
ing on whether it it safe to use table lookups or not. The fastest encryption
implementations for a single block use the idea that the various steps of the round
function can be combined in large lookup tables, usually called T-tables [DR02].
However, this type of implementation is known to be vulnerable to cache-based
timing attacks [Ber05a; OST06]. A CPU cache can leak information about which
memory address has been accessed during a computation. When this memory
address depends on a secret intermediate value as is the case with the T-table
approach, it can be used to extract secret information.

When multiple blocks can be processed in parallel (e. g., in CTR or GCM
mode) and the CPU registers are large enough to accommodate multiple blocks,
bitsliced implementations can be more efficient [Kön08; KS09]. This type of
AES implementation has the additional advantage that lookup tables are easily
avoidable, allowing a careful implementer to make it resistant against timing
attacks.

Our particular benchmarking platform does not have a data cache. We also
do not identify other potential sources of timing leakage. Therefore, it should

be safe to use a table-based AES implementation on this device. However, this
might not be the case on other RISC-V platforms. Table-based implementations
might also demand an unreasonable amount of memory on small embedded
RISC-V-based devices. This is why we treat both implementation categories.

153

Chapter 7. RISC-V

7.3.1 Table-based Implementations

At Indocrypt 2008, Bernstein and Schwabe explained how to optimize table-based
AES implementations for a variety of CPU architectures [BS08]. They describe
a baseline of 16 shift instructions, 16 mask instructions, 16 load instructions
for table lookups, 4 load instructions for round keys, and 16 XOR instructions
per AES round, plus 16 additional mask instructions in the last round and 4
additional round-key loads and 4 XOR instructions for the initial AddRoundKey.
This baseline excludes the cost of loading the input into registers, writing the
output back to memory, and some overhead such as setting the address of
the lookup table in a register and storing callee-save registers on the stack
when necessary. They then continue by listing various architecture-dependent
optimizations.

On RISC-V, very few of these techniques are possible, which is no surprise
given that the instruction set is intentionally kept very simple. The LBU byte load
instruction allows to save 4 mask instructions in the final round. On the other
hand, the baseline count assumes that it is possible to load from an address
specified by a base value in one register and an offset in another register. While
this holds for many architectures, it is not true for RISC-V. Instead, the full
address needs to be explicitly computed each time. This means that we require
16 extra ADD instructions per round.

With round-key recomputation, only 14 round-key words have to be stored
and loaded instead of 44. This saves 30 SW instructions in the key expansion, but
more importantly, it allows to swap 30 LW instructions for 30 XOR instructions at
the cost of using 4 extra registers of which their values need to be saved on the
stack. We expected this to improve performance for encryption on our platform.
However, it turned out that this was not the case so we did not employ this
technique.

There is more that can be done with the free registers that are available.
Some of the round keys could also be cached in registers such that they do not

154

7.3. AES

have to be loaded for every block when encrypting multiple blocks. However,
to keep the implementation as versatile as possible, we decided not to do this
and to encrypt just a single block. This makes it possible to straightforwardly
build any mode around it.

Result. We implemented and optimized the AES-128 key expansion and
encryption algorithms. Both use the same 4 KiB lookup table. Key expansion
finishes in 340 cycles and requires no stack memory. Encryption of a single
16-byte block is performed in 912 clock cycles. This uses 24 bytes on the stack to
store callee-save registers.

7.3.2 Bitsliced Implementations

With bitsliced AES implementations, the internal parallelism in the SubBytes
step usually means that the AES state is represented in such a way that a register
is made to contain the 𝑖th bit of every byte of the state. This means that 8
registers are needed to represent the AES state, but then only 16 bits in the
register are used, which is suboptimal. However, when multiple AES blocks
can be processed in parallel, they can be stored in the same registers in order
to process them simultaneously. Especially when the registers are large, this
yields very high throughputs [KS09].

We implement an optimized bitsliced implementation of AES-128 in CTR
mode. With 32-bit registers, only 2 blocks can be processed in parallel. The
implementation is inspired by an earlier implementation optimized for the ARM
Cortex-M4 architecture [SS16c] that formed the basis of Chapter 6.

For the most expensive operation, SubBytes, we use the smallest known
circuit by Boyar and Peralta of 113 gates [BP10]. On the Cortex-M4, this could
not be implemented directly because there were not enough registers available.
With RV32I, carefully rearranging the instructions permits not having to spill

155

Chapter 7. RISC-V

any intermediate value to the stack. We can therefore implement SubBytes in
exactly 113 single-cycle bitwise instructions.

ShiftRows with a regular state representation uses rotations over the full
rows of the AES state that are stored in registers. The equivalent for the bitsliced
state representation requires to do rotations within a byte of a register, which is
trickier to implement. The RV32I base ISA does not offer convenient instructions
to do this or to extract bits from a register. It therefore has to be implemented
by simply masking out a group of bits, shifting them to their correct position
and inserting them in a result register. This takes 6 OR instructions, 7 AND(I)
instructions and 6 shift instructions per state register. There are 8 state register,
so this has to be done 8 times for one AES round.

On the Cortex-M4, MixColumns could be implemented with just 27 XOR
instructions, heavily using the fact that one operand can be rotated for free.
RISC-V, however, does not have a native rotation instruction in the base ISA
at all. Therefore the rotation has to be implemented with two shifts and an
OR instruction. We study the impact of rotation instructions in more detail in
Section 7.7.2. In total, our MixColumns implementation uses 27 XOR instructions
and 16 rotations.

The other parts of the implementation are straightforward or are very similar
to the Cortex-M implementation of Chapter 6.

Result. Key expansion and conversion of all round keys to the bitsliced format
takes 1239 clock cycles and 16 stack bytes. For benchmarking encryption, we
selected a fixed plaintext size of 4096 bytes. This can be encrypted or decrypted
with AES-128-CTR in 509 622 cycles, or at 124.4 cycles per byte. 60 stack bytes
are used to store callee-save registers and copies of a few other values.

156

7.4. ChaCha

7.4 ChaCha

ChaCha is a family of stream ciphers based on Salsa20 [Ber08a]. It is known
for its high speed in software and together with a message authentication code
called Poly1305 it is used in TLS and OpenSSH [Ber05b; LCM+16; NL18].

ChaCha starts by loading constants, a 256-bit key, a 96-bit nonce, and a
32-bit counter into a 512-bit state. With RV32I, there are enough registers to
keep the full state in registers during the whole computation. ChaCha20 is the
most commonly used ChaCha variant that performs 20 rounds. Every round
contains 4 quarter-rounds and every quarter-round consist of 4 additions, 4
XORs, and 4 rotations of 32-bit words. Because the RV32I base ISA lacks rotation
instructions, every rotation has to be replaced by 2 shift instructions and an OR
instruction. In total we require 20 single-cycle instructions to implement the
ChaCha quarter-round.

The other parts are straightforward. As long as the input to the stream cipher
is longer than 64 bytes, we generate the key-stream and XOR it with the input
in blocks of 64 bytes. If the input length is not divisible by 64 bytes, there will
be some bytes remaining that still need to be encrypted. For those, another 64
bytes of key-stream is generated. These are XORed with the input first per word
(4 bytes) and finally per byte.

7.4.1 Result

Our implementation of the complete Chacha20 stream cipher requires 32 bytes
in the DTIM memory to store constants and another 40 bytes on the stack to
store callee-save registers. We benchmark speed with the same fixed input size
of 4096 bytes as we used for the bitsliced AES-128-CTR implementation. This
can be encrypted or decrypted in 114 365 clock cycles, or at 27.9 cycles per byte.

157

Chapter 7. RISC-V

7.5 Keccak

The Keccak- 𝑓 family of permutations was designed in the course of the SHA-3
competition [BDPV11b]. The Keccak- 𝑓 [1600] instance is now at the core of the
SHA-3 hash functions and the SHAKE extendable output functions standardized
by NIST [NIS15b]. It it also used in various other cryptographic functions.
An optimized implementation of the Keccak- 𝑓 [1600] permutation therefore
benefits all those schemes. In the Keccak implementation overview a number of
implementation techniques are discussed, including those relevant to 32-bit
software implementations [BDP+12].

7.5.1 Efficient Scheduling

The permutation operates on a relatively large state of 1600 bits. Having the
RV32I architecture in mind, this state is clearly too large to fit into registers.
It is therefore required to swap parts between memory and registers during
the computation. Loads from memory and stores to memory are relatively
expensive, so for an efficient implementation it is important to keep the number
of loads and stores at a manageable level.

The permutation iterates a round function consisting of the steps 𝜃, 𝜌, 𝜋,
𝜒, and 𝜄. The first four steps each process the full state. Computing them one
by one would therefore use many loads and stores. The designers described a
technique to merge the computation of these steps such that only two passes
over the full state are required per round. This is explained in detail in the
implementation overview document [BDP+12]. We follow the same approach
for our RISC-V implementation.

7.5.2 Bit Interleaving

The state is structured as 5 × 5 64-bit lanes. On a 32-bit architecture, one could
simply split the lanes into two halves that are stored in separate registers, but

158

7.5. Keccak

for the permutation itself, it is more efficient to interleave the bits. The bits with
an even index are then stored in one register and those with an odd index in
another. The lane-wise translations in 𝜃 and in 𝜌 then become 32-bit rotations.
It has been mentioned before that the RV32I base ISA does not contain rotation
instructions.

In fact, with both approaches a lane-wise translation costs 6 single-cycle
instructions. The difference is that with the interleaved representation, for
translation offsets of 1 or -1 only a single register has to be rotated. Those then
only cost 3 single-cycle instructions. Because this is the case for 6 out of 29 lane
translations per round, bit interleaving still provides a nice improvement if one
only considers Keccak- 𝑓 .

7.5.3 Lane Complementing

The 𝜒 step computes 5 XOR, 5 AND, and 5 NOT (64-bit) operations on the lanes
of every plane of the state. There are 5 such planes and we only have 32-bit
instructions, so in total 𝜒 requires 50 XOR instructions, 50 AND instructions,
and 50 XORI instructions with −1 as immediate per round. The number of
XORI instructions can be reduced to 10 by representing certain lanes by their
complement and by changing some AND instructions into OR instructions. This
comes at the cost of applying a mask at the beginning and at the output of
Keccak- 𝑓 . This technique is also described in more detail in the implementation
overview document [BDP+12]. This is a useful technique on the RISC-V, because
there is no instruction that combines an ANDwith a NOT of one of its operands,
as is the case on some other architectures.

7.5.4 Result

Our RISC-V implementation is inspired by the fastest Cortex-M3/M4 imple-
mentation known to us, which is the KeccakP-1600-inplace-32bi-armv7m-le

159

Chapter 7. RISC-V

implementation in the eXtended Keccak Code Package.4 The main differences
are that we add lane complementing and that we keep more variables in registers
instead of having to store them on the stack.

Memory-wise our implementation requires 192 bytes in the DTIM memory
for the round constants and 20 bytes on the stack. To benchmark speed, we
measure a single execution of the permutation from the instruction cache. This
takes 13 774 clock cyles, or 68.9 cycles per byte.

7.6 Arbitrary-Precision Arithmetic

Arbitrary-precision arithmetic on integers, also called big-integer arithmetic, is
a core component of public-key cryptographic systems such as RSA and elliptic-
curve cryptography. We consider addition and two multiplication algorithms,
schoolbook and Karatsuba multiplication. The multiplication algorithms make
heavy use of the RISC-V M extension. This provides a 32 × 32-bit multiplier and
the MUL and MULHU instructions, among some others that we will not use. MUL
gives the lower 32 bits of the 64-bit multiplication result, MULHU the higher 32
bits, interpreting its operands both as unsigned values. On the E31, they each
have a result latency of 2 clock cycles.

7.6.1 Carries and Reduced-Radix Representations

An arbitrarily large integer is usually represented as a vector of CPU words. The
part of the integer that fits in a single CPU word is called a limb. Arithmetic
on arbitrary-precision integers then translates to an algorithm that performs
arithmetic with the limbs, as those are the only units that a CPU can work with.

The addition of two limbs may result in an overflow. On most CPU archi-
tectures, whether an overflow occurred is stored in a carry flag. This can then
subsequently be used in an add-with-carry operation.

4 https://github.com/XKCP/XKCP

160

https://github.com/XKCP/XKCP

7.6. Arbitrary-Precision Arithmetic

RISC-V, however, does not specify the existence of a carry flag. Instead, the
carry needs to be explicitly computed every time. The SLTU instruction (set
less than unsigned) is very useful for this. Let 𝑟 = 𝑎 + 𝑏, where 𝑟, 𝑎, and 𝑏 are
unsigned 32-bit values. The addition produces a carry 𝑐 when 𝑟 < 𝑎 (or 𝑟 < 𝑏).
In assembly, this can be implemented with ADD r, a, b; SLTU c, r, a.

This explicit carry handling can be the cause of a significant overhead. One
way to avoid this is by guaranteeing that a carry will not occur. This is possible
by using a reduced-radix representation, also known as a redundant integer
representation. Instead of the full 32 bits, one can use the least-significant 𝑘 bits
of every limb, such that the most-significant 32− 𝑘 bits are zero at the start. This
radix-2𝑘 representation requires more limbs to store an integer of the same bit
length, but the advantage is that one can do one or even many additions without
producing an overflow. The carries are accumulated in the most-significant
32 − 𝑘 bits of the same limb. Only in the end they may need to be added to the
next limb to get back to a unique integer representation.

What is more efficient is highly application-dependent, as that determines
how many and which operations are computed on the integers. We aim to
keep this neutral by studying the performance of both types of addition and
multiplication algorithms for an arbitrary number of limbs, without specifying
a precise radix.

7.6.2 Addition

Arbitrary-precision addition is a simple operation that consists of a carry chain
for full-limb (radix-232) integer representations. The operands are added limb-
wise, where every such addition may result in an overflow that has to be carried
to the next limb.

Figure 7.1 shows how both reduced and full representations compare. It
appears that carry handling is a significant part of the computational effort. A
reduced-radix representation is approximately 37% faster than a representation

161

Chapter 7. RISC-V

that is not redundant. However, one should note that with a reduced-radix
representation, more limbs will be required. For example, it is fairer to compare
the reduced-radix representation with 12 limbs to the full-radix representation
with 10 limbs, when only 27 bits are used in every limb, i. e., in radix 227. The
cost of carrying at the end to get back to a unique representation also needs to
be taken into account.

Still, it appears that reduced-radix representations can be beneficial when
multiple additions have to be computed.

Figure 7.1 also shows the estimated cost of full-limb addition if there were a
carry flag and add-with-carry operation. This is discussed in Section 7.7.4.

2 4 6 8 10 12 14 16 18 20
0

100

200

300

Number of limbs

C
yc

le
s

Reduced
Full
Full + carry

Figure 7.1: Performance of arbitrary-precision addition.

7.6.3 Schoolbook Multiplication

Many algorithms exist to implement arbitrary-precision multiplication. One
of the simplest ones is called schoolbook multiplication. With the schoolbook
multiplication method multiplying two 𝑛-limb integers takes 𝑛2 single-limb (in
our case: 32 × 32-bit) multiplications.

162

7.6. Arbitrary-Precision Arithmetic

A representation that is not reduced still has to perform some carry handling,
but the cost of this is much less significant with multiplication compared to
addition, as can be seen in Fig. 7.2. Schoolbook multiplication with reduced-
radix representations is only 8% faster than multiplication with representations
that are not reduced. And because more limbs will be required, there is actually
very little advantage to using a reduced-radix representation.

This can be explained by the fact that the LW, SW, MUL, and MULHU instructions
take more CPU cycles compared to the simpler bitwise and arithmetic instruc-
tions. A reduced-radix representation does not avoid this more significant part
of the cost of the inner loop of the algorithm.

7.6.4 Karatsuba Multiplication

The Karatsuba algorithm was the first multiplication algorithm that was discov-
ered that has a lower asymptotic time complexity than 𝒪(𝑛2) [KO63]. Instead, it
can recursively multiply arbitrary-precision integers in 𝒪(𝑛log2 3). It succeeds in
this by effectively trading an 𝑛-limb multiplication for 3 𝑛

2 -limb multiplications
and several additions.

The details of the Karatsuba multiplication algorithm have been extensively
covered in other works. It is used in many implementations of cryptographic
schemes, most notably for RSA [SV93] and elliptic-curve cryptography [BCL14;
DHH+15; FA19], but also for more recent lattice-based [KRS19] and isogeny-
based [SLLH18] post-quantum cryptography.

We implement a single level of subtractive Karatsuba that multiplies two
equal-length operands with an even number of limbs. This restriction is
only there to simplify the performance analysis by being able to omit a few
implementation details for dealing with special cases. The case of equal-length
operands with an even number of limbs is also in fact the most common scenario
in cryptography, which is why it is not even necessarily a relevant restriction.

163

Chapter 7. RISC-V

Figure 7.2 shows that even for a very small number of limbs, the Karatsuba
multiplication algorithm is already faster than schoolbook multiplication. This
is not obvious, as the cost of the extra additions and constants in the complexity
typically imply a certain threshold where Karatsuba starts to perform better.

The gap between reduced-radix representations and nonreduced or full-limb
representations is slightly larger than with schoolbook multiplication, which
can be partially explained by the extra additions that need to be computed.
Its difference is now approximately 21%. Whether this suffices to make a
reduced-radix representation more efficient in practice is hard to conclude from
this data. It will depend on the specific application.

2 4 6 8 10 12 14 16 18 20
0

2,000

4,000

6,000

8,000

Number of limbs

C
yc

le
s

Schoolbook reduced
Schoolbook full
Schoolbook full + carry
Karatsuba reduced
Karatsuba full
Karatsuba full + carry

Figure 7.2: Performance of arbitrary-precision multiplication.

7.7 Extending RISC-V and Discussion

7.7.1 Speed Comparison with ARM Cortex-M4

The RISC-V platform that we used has similarities with ARM Cortex-M micro-
processors. Both have 32-bit architectures and are designed for cheap embedded

164

7.7. Extending RISC-V and Discussion

applications. The main difference is that ARM microprocessors have a richer
(proprietary) instruction set. For example, rotations are always available in
ARMv7-M and can even be combined with arithmetic instructions in a single
CPU cycle. The architecture also provides nicer bit-extraction instructions, a
carry flag and a single-cycle add-with-carry. On the other hand, RV32I comes
with more registers, which may benefit cryptographic primitives that have a
larger state. This can save a lot of overhead of having to spill values to the stack.

At first sight, it is unclear which weighs more heavily. We therefore compare
the relative performance of our optimized cryptographic primitives with their
counterpart on the Cortex-M4. There already exist AES, ChaCha20, and Keccak-
𝑓 [1600] assembly implementations optimized for that platform.

Table 7.1: Comparison between the E31 (RV32IMAC) and the Cortex-M4.

Scheme
Cortex-M4 E31/RV32IMAC

Cycles Cyc./byte Cycles Cyc./byte

Table AES-128 key exp. 244.9 [SS16c] 340

Table AES-128 634.7 [SS16c] 39.8 912 57.0

Bitsliced AES-128 key exp. 1021.9 [SS16c] 1239

Bitsliced AES-128-CTR 413 849.6* 101.0 [SS16c] 509 622* 124.4

ChaCha20 encrypt 56 934.4* 13.9 [HRS16] 114 365* 27.9

Keccak- 𝑓 [1600] permute 12 969† 64.8 13 774 68.9

* When encrypting 4096 bytes.
† We benchmarked the KeccakP1600_Permute_24rounds function from
https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-

1600/ARM/KeccakP-1600-inplace-32bi-armv7m-le-gcc.s on a board
with an STM32F407 microcontroller.

165

https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/KeccakP-1600-inplace-32bi-armv7m-le-gcc.s
https://github.com/XKCP/XKCP/blob/master/lib/low/KeccakP-1600/ARM/KeccakP-1600-inplace-32bi-armv7m-le-gcc.s

Chapter 7. RISC-V

Table 7.1 provides the exact numbers, while Fig. 7.3 visualizes their relative
speed. It can be seen that all schemes require more cycles with the RV32I
architecture. Of course, this does not directly relate to speed in practice, as
we do not take the different CPU clock frequencies into account. It shows
that all schemes use instructions that can be computed in a single cycle on
the Cortex-M4, but not with RV32I. Relatively, it appears that ChaCha20 has
the largest disadvantage because of this. For this scheme, the lack of rotation
instructions seems to outweigh the possibility to keep the full state in registers
without spilling to the stack, something that is necessary on the Cortex-M4.

7.7.2 The RISC-V B Extension

The RISC-V foundation reserved the B extension for bit manipulation instructions.
In 2017 there was an active working group that would develop a specification
for the B extension. However, the working group dissolved in November 2017
for bureaucratic reasons.5 An independent fork was developed outside of the
RISC-V foundation, which was merged back and made official in March 2019.

The latest V0.92 draft specification adds 58 new instructions.6 While it is
unknown which will be used in the end, it is likely that this will include some type
of rotation, byte shuffle, and bit-extraction instructions. The current specification
also includes an and-with-complement instruction. This would imply that lane
complementing would no longer be advantageous for Keccak- 𝑓 [1600].

We estimate the impact that this extension will have, focussing on rotations.
For each scheme, we counted all instruction sequences that could be replaced
by a rotation instruction. Our table-based AES does not use rotations, while the
bitsliced AES implementations uses 144 of them. ChaCha20 uses 320 rotation
instructions and Keccak- 𝑓 [1600] 1248.

Assuming that the rotation would be done in a single cycle, we calculated
how many CPU cycles would be saved by having this instruction. The results

5 https://groups.google.com/forum/#!forum/riscv-xbitmanip

6 https://github.com/riscv/riscv-bitmanip

166

https://groups.google.com/forum/#!forum/riscv-xbitmanip
https://github.com/riscv/riscv-bitmanip

7.7. Extending RISC-V and Discussion

can be seen in Table 7.2 and Fig. 7.3. For Keccak and especially for ChaCha20,
rotations are a significant part of their computational cost. From Fig. 7.3 it is
clear that with rotations, the Keccak- 𝑓 permutation can be computed in fewer
cycles than on the Cortex-M4. This is because more registers are available.

Table 7.2: Estimated improvement with a rotation instruction.

Scheme Rotations Improvement Cycles/byte

Table-based AES 0 0.0% 57.0

Bitsliced AES 144 7.0% 115.7

ChaCha20 320 35.8% 17.9

Keccak- 𝑓 [1600] 1248 18.1% 56.4

Table-based
AES

Bitsliced
AES-CTR

ChaCha20 Keccak- 𝑓
0

50

100

C
yc

le
s/

by
te

Cortex-M4
RV32I
RV32I with rotate

Figure 7.3: Speed of cryptographic primitives.

167

Chapter 7. RISC-V

7.7.3 Number of Registers

We already discussed some consequences of the large number of registers that
are available on the performance of these implementations. Especially ChaCha
and Keccak, but also the bitsliced AES implementation, benefit from having to
spill fewer intermediate values to the stack. It is noteworthy to mention that the
RV32E instruction set, which is nearing its completion and which is intended
to target embedded devices, will most likely decrease the number of registers
from 32 to 16 [RIS19]. This will set back the performance of aforementioned
schemes, but this may be compensated by supporting the B extension with a
rotation instruction.

7.7.4 Carry Flag

In Section 7.6 we studied the performance of arbitrary-precision addition and
multiplication with and without reduced-radix integer representations. We now
estimate how full-limb representations would perform if an RV32I core was
extended with a carry flag and an add-with-carry instruction. We assume that
this instruction would have a result latency of a single CPU clock cycle, similar
to a regular addition instruction.

For addition, 4 cycles per limb would be saved in our implementation. We
then subtracted 4𝑛 cycles from the full-radix addition results, where 𝑛 is the
number of limbs. The result can be seen in Fig. 7.1. As is to be expected, addition
with this instruction is almost as fast as reduced-radix representation, the only
difference being the top (most-significant) limb that gets set.

With schoolbook multiplication 2𝑛2 cycles are subtracted, as we can save 2
cycles in the inner loop with the add-with-carry instruction, which is executed
𝑛2 times. For Karatsuba multiplication we computed that the add-with-carry
instruction would save 27 𝑛2 + 6

(
𝑛
2
)2 cycles. The quadratic term comes from

the cycles that are saved with the schoolbook multiplications and the linear
part from the cycles that are saved with additions. Figure 7.2 contains plots

168

7.8. Conclusion

for both estimates. With an add-with-carry instruction both schoolbook and
Karatsuba multiplication would be approximately as fast as their reduced-radix
counterparts. The reduced-radix implementations use more limbs and still need
to carry at the end, so it is appears that an add-with-carry instruction completely
compensates for any advantage that a reduced-radix implementation gives.

7.8 Conclusion

We showed how AES, ChaCha, and Keccak- 𝑓 can be implemented efficiently on
the 32-bit variant of the promising open-source RISC-V architecture. We also
showed how arbitrary-precision addition and multiplication can be implemented
and studied the performance of all these primitives. As the RISC-V is an open
design intended to be extensible, we showed for several features, such as a
rotation instruction and an add-with-carry instruction, how much improvement
exactly could be gained by adding these features. These numbers are essential
for making reasonable trade-offs in software-hardware co-design and we hope
that they will be found useful by a wide audience.

169

PART III

Side-Channel Countermeasures

Chapter 8
Vectorization

Part III introduces techniques to optimize specific countermeasures against side-channel

attacks. Masking is one of these countermeasures. This chapter is about how vector

registers in CPUs can be exploited in the implementation of parallel masking schemes.

In comparison to the original publication [GPSS18], the appendix has been merged into

the text and minor textual edits have been made.

8.1 Introduction

There is a long history of protecting AES [DR02] implementations against side-
channel analysis (SCA) or side-channel attacks. Side-channel attacks exploit
physical information, such as power consumption or electromagnetic radiation
of devices running some cryptographic primitive, to learn information about
secret data, typically cryptographic keys. Higher-order masking is a well-
studied countermeasure against such attacks [CJRR99; GP99]; unfortunately, it
comes at a rather high cost in terms of performance. This is a reason why in
practice, well-protected implementations are not as ubiquitous as one would
hope. In software, higher-order masked implementations are typically orders of
magnitude slower compared to unprotected implementations, as was explored
at Eurocrypt 2017 by Goudarzi and Rivain [GR17].

Simultaneously at Eurocrypt 2017, a theoretical model was proposed to
study the security of parallel implementations of masking schemes, called the
bounded-moment leakage model [BDF+17]. As parallelization can be a very
powerful tool to increase performance, this model gives the foundation for
faster protected implementations. One common way to parallelize software
implementations is through vectorization. In a vectorized implementation, a

173

Chapter 8. Vectorization

single instruction operates on multiple data elements inside one vector register
at the same time. For vectorization to be useful, data parallelism is required,
which in the case of higher-order masking is trivially provided by the necessity
to compute on multiple shares.

Precisely this approach of vectorization with data-level parallelism coming
from multiple shares was used in a CHES 2017 paper by Journault and Stan-
daert [JS17]. That paper studies a parallel bitsliced (i. e., vectorized with 1-bit
vector elements) implementation using 32 shares on the ARM Cortex-M4. The
reason for using 32 shares was the fact that the Cortex-M4 has 32-bit registers
and bitslicing is then very efficient at 32× data-level parallelism. Empirical
tests described in that paper confirmed that the bounded-moment model is
also useful in practice. Specifically, these tests showed that a 4-share version
of their implementation yielded no leakage of order less than 4. It is of course
still possible that the actual security order is lower, but it can at least be viewed
as an encouraging result. They conclude their evaluation by performing an
information-theoretic analysis of the leakage in order to bound the attack
complexity for the 32-share implementation.

In this chapter we study how the powerful NEON vector unit on larger
ARM Cortex-A processors can be used to obtain efficient masked AES imple-
mentations. Straightforwardly adapting the approach from [JS17] to obtain
data-level parallelism would result in implementations with 64 or 128 shares
(for 64-bit or 128-bit vector registers), which would be a security overkill and
result in terrible performance. Instead we follow the approach of the bitsliced
AES implementations presented in [Kön08; KS09], which exploit the data-level
parallelism of 16 independent S-box computations. As a result, we present
implementations using 4 and 8 shares, which in theory offer security up to the
3rd and 7th order. We use refreshing and multiplication algorithms that are
based on the algorithms in [BDF+17] and even slightly improve on some of
them by requiring less randomness. They are proven secure in the bounded-
moment model and also proven to satisfy strong non-interference [BBD+16]. We

174

8.2. Preliminaries

provide a concrete evaluation of our implementations on a BeagleBone Black,
which has been used successfully before to perform differential electromagnetic
analysis at 1 GHz [BGRV15]. Using nearly the same setup, we employ the
popular TVLA methodology [CDG+13] in conjunction with leakage certifica-
tion [DSP16] and we show that there is actually some leakage in the 3rd order
of our 4-share implementation, but not in the 2nd order. We then continue to
bound the measurement complexity of the 8-share implementation using an
information-theoretic approach [DFS15].

To summarize, the contributions of this chapter are that
▶ we provide the first vectorized instantiation of the bounded-moment

leakage model published at Eurocrypt 2017 [BDF+17] with strong non-
interference [BBD+16];

▶ we provide the fastest publicly available higher-order masked AES imple-
mentations with 4 and 8 shares for the ARM Cortex-A8; and that

▶ we perform a practical side-channel evaluation of the 4-share AES imple-
mentation and derive security bounds for the 8-share implementation.

Source code. The source code of our implementations is available in the public
domain. It can be downloaded at https://github.com/Ko-/aes-masked-neon.

8.2 Preliminaries

8.2.1 Higher-Order Masking of AES

Implementations of cryptographic primitives such as block ciphers are typically
vulnerable to attacks that use SCA. Information about physical characteristics,
such as the electromagnetic radiation, of a device that executes a block cipher
can be used to recover the secret key [GMO01; Koc96].

A well-studied countermeasure against this class of attacks is (higher-order)
masking. It works by splitting each secret variable 𝑥 into 𝑑 shares 𝑥𝑖 that satisfy

175

https://github.com/Ko-/aes-masked-neon

Chapter 8. Vectorization

𝑥0 ⊕ 𝑥1 ⊕ 𝑥2 ⊕ · · · ⊕ 𝑥𝑑−1 = 𝑥. When ⊕ denotes the Boolean XOR operation, this
is called Boolean masking. Any 𝑑 − 1 of these shares should be statistically
independent of 𝑥 and should be uniformly randomly distributed. If this is the
case, then this masking scheme provides privacy in the (𝑑 − 1)-probing model,
as put forward by Ishai, Sahai, and Wagner [ISW03]. The idea is that an attacker
applying 𝑑 − 1 probes to learn intermediate values of the computation will not
be able to learn anything about the secret value. The value 𝑑 − 1 is called the
order of the masking scheme.

When masking is applied, operations on 𝑥 are to be performed on its shares.
For linear operations 𝑓 , those that satisfy 𝑓 (𝑥+𝑦) = 𝑓 (𝑥)+ 𝑓 (𝑦) and 𝑓 (𝑎𝑥) = 𝑎 𝑓 (𝑥),
it holds that they can trivially be computed on the shares of 𝑥 individually. For
nonlinear operations, several algorithms have been suggested to retrieve the
correct result. In [ISW03] it was shown how to compute a masked AND gate and,
together with the linear NOT, this is functionally complete.

AES [DR02] in particular has received a lot of attention when it comes to
protected implementations. The round function of AES consists of AddRound-
Key, SubBytes, ShiftRows, and MixColums. AddRoundKey, ShiftRows, and
MixColumns are all linear. SubBytes is not. Much research has therefore
been aimed at finding efficient representations of a masked variant of the AES
S-box [CB08; GR17; KHL11; RP10].

8.2.2 Strong Non-interference

Strong non-interference (SNI) is a security notion, formalized in [BBD+16], that is
slightly stronger than probing security. It currently seems to be the right security
notion when considering practical security. The problem with probing security
is that, given two algorithms that are secure at order 𝑑 − 1 in the probing model,
the composition of these algorithms is not necessarily secure at order 𝑑 − 1. SNI,
on the other hand, means that an algorithm is composable, guaranteeing that one
can verify the security of the composition of multiple secure algorithms.

176

8.2. Preliminaries

As an example to see why SNI is desirable, consider the provably secure
masking scheme by Rivain and Prouff from CHES 2010 [RP10]. Three years
later, an attack was found against the composition of the refreshing of masks
and the masked multiplication [CPRR14]. The scheme was fixed subsequently.
It was shown in [BBD+16] that the main difference between the original and the
fixed algorithms is exactly this notion of strong non-interference.

Automated verification tools exist to formally prove strong non-interference.
This gives stronger guarantees on the theoretical security of a masking scheme.

8.2.3 Bounded-Moment Leakage Model

The probing model and its variants are not always straightforward to interpret.
The fact that 𝑑 − 1 shares should be statistically independent is based on the
idea that an attacker can inspect the leakage of intermediate computations
on the shares separately. In software, it therefore applies better to serial
implementations. When computations are performed on multiple shares in
parallel, it is not immediately clear what the relation with the probing security
model is.

To handle this, the bounded-moment model has been proposed in [BDF+17].
It is more targeted toward parallel implementations and can deal with the concept
that multiple shares are manipulated simultaneously. Barthe, Dupressoir,
Faust, Grégoire, Standaert, and Strub proved that probing security of a serial
implementation implies bounded-moment security for its parallel counterpart.
It is a weaker security notion than the noisy leakage model [CJRR99; PR13].

Security in the bounded-moment model is defined using leakage vectors and
mixed moments. For every clock cycle 𝑐, there is a leakage vector 𝐿𝑐 . The leakage
vector is a random variable that is computed as the sum of a deterministic part
that depends on the shares that are manipulated, and on the noise 𝑅𝑐 . The
mixed moment of a set {𝑌1 , . . . , 𝑌𝑟} of 𝑟 random variables at orders 𝑜1 , . . . , 𝑜𝑟 can
be defined as E

[∏𝑟
𝑖=1𝑌𝑖

]
, where E denotes the expected value. Now, consider

177

Chapter 8. Vectorization

an 𝑁-cycle cryptographic implementation that manipulates a secret variable
𝑥. This results in a set {𝐿1 , . . . , 𝐿𝑁 } of 𝑁 leakage vectors. The implementation
is said to be secure at order 𝑜 in the bounded-moment model if all the mixed
moments of order ≤ 𝑜 of {𝐿1 , . . . , 𝐿𝑁 } are statistically independent of 𝑥.

8.2.4 Vectorization with NEON

The ARM Cortex-A8 is a 32-bit processor that implements the ARMv7-A
microarchitecture. It is used in smartphones, digital TVs, and printers, among
others. It was first introduced in 2005 and is currently widely deployed. Its main
core can run at 1 GHz and implements features such as superscalar execution,
an advanced branch prediction unit, and a 13-stage pipeline. There are 16 32-bit
r registers, of which 14 are generally available to the programmer.

The Cortex-A8 comes with the so-called Advanced SIMD extension, better
known as NEON, that adds another 16 128-bit q registers. These vector registers
can also be viewed as 32 64-bit d registers. For example, q0 consists of d0 and
d1, q1 consists of d2 and d3, etc. Operations can typically be performed on
8-bit, 16-bit, or 32-bit elements in a SIMD fashion. While 128-bit registers are
supported, the data path of the Cortex-A8 is actually only 64 bits wide, which
means that operations on 128-bit registers will be performed in two steps. NEON
has a separate 10-stage pipeline. In particular, it has a load/store unit that runs
next to an arithmetic unit. This means that an aligned load and an arithmetic
instruction can be executed in the same cycle.

NEON has been used successfully in the past to vectorize and optimize
implementations of cryptographic primitives [BS12], but its power has to the
best of our knowledge not yet been exploited for higher-order masking in the
way that we propose here.

178

8.3. Vectorizing Masking of AES

8.3 Vectorizing Masking of AES

8.3.1 Representing the Masked State

The AES state [DR02] is usually pictured as a square matrix of 4 by 4 byte-sized
elements. This representation leads to efficient software implementations when
SubBytes is implemented using lookup tables. However, such implementations
are also prone to cache-timing attacks [Ber05a], as the memory location of the
value that is looked up depends on some secret intermediate value. An alterna-
tive bitsliced representation avoids these attacks. In this bitsliced representation,
all the first bits of every byte are put in one register, all the second bits in the next
register, etc. For SubBytes, one can now compute the S-box on the individual
bits and do that for all 16 bytes in parallel. The S-box parallelism of AES for
bitslicing was first exploited by Könighofer in [Kön08] and it was also used in
the speed-record-setting AES implementation targeting Intel Core 2 processors
by Käsper and Schwabe [KS09]. At a small cost, the other (linear) operations of
AES are modified to operate on this bitsliced representation as well.

However, on most devices registers are longer than 16 bits, so it would be a
waste to not utilize this. AES implementations without side-channel protections
choose to process multiple blocks in parallel, by simply concatenating multiple
16-bit chunks from independent blocks in one register. For example, the AES
implementation of [KS09] processes 8 blocks in parallel in a 128-bit XMM
register. When the vector registers become larger, this trivially leads to higher
throughputs for parallel modes of operation.

In this section we present three implementations that, instead of multiple
blocks, process multiple shares in parallel. The first implementation fills a 64-bit
d register with 4 shares. The second has 8 shares, that are used to fill a 128-bit q
register. The third combines 2 blocks with each 4 shares, and also utilizes the
128-bit q registers. It interleaves the shares of the 2 blocks for efficiency reasons.
Note that this third implementation requires a parallel mode of operation.

179

Chapter 8. Vectorization

share 0 share 𝑑 − 1

row 0 row 1 row 2 row 3

co
l0

co
l1

co
l2

co
l3

Figure 8.1: Register layout for the single-block implementations. There are 8 of
these 16𝑑-bit vector registers. Rectangles on the bottom left represent individual
bits.

8.3.2 Parallel Multiplication and Refreshing

In [BDF+17], new algorithms for parallel multiplication (including the AND
operation) and parallel refreshing were proposed. They are proven to be secure
in the bounded-moment model and proven to satisfy strong non-interference
using techniques from automated program verification [BBD+15]. Correct
implementations of these algorithms are critical for the security of our imple-
mentations. We suggest slightly improved algorithms for 𝑑 = 4 and 𝑑 = 8 that
require less randomness, but we could not generalize them to an improvement
for all orders. As with the original algorithms, they are proven secure using the
same automatic verification tools.

Refreshing – 4 shares. Refreshing can be necessary to make sure that values
in registers are again statistically independent. The refreshing algorithm
in [BDF+17] requires 2𝑑 bytes of fresh uniform randomness. Let x (in boldface)
denote a vector register that contains [𝑥0 , . . . , 𝑥𝑑−1], where

⊕𝑑−1
𝑖=0 𝑥𝑖 = 𝑥, and let

r be a vector of the same length that contains uniformly random values. For
AES, a single share takes 2 bytes in a register, so a randomness vector r will be
2𝑑 bytes.

180

8.3. Vectorizing Masking of AES

Then x′ = r ⊕ rot(r, 1) ⊕ x is a secure way to refresh 𝑥, where rot(a, 𝑛) rotates
a to either left or right by 𝑛 shares. In the case of AES, this is equal to applying a
rotation by 2𝑛 bytes. For 4 shares, this algorithm additionally achieves SNI.

Listing 8.1: NEON implementation of refreshing with 4 shares.

//param rand is r register with address of randomness

//param a is d register to refresh

//param tmp is d register that gets overwritten

.macro refresh rand a tmp

vld1.64 {\tmp}, [\rand]! //get 8 bytes of randomness

veor \a, \tmp

vext.16 \tmp, \tmp, #1

veor \a, \tmp

.endm

Refreshing – 8 shares. While the previous refreshing algorithm generalizes
to 8 shares, it no longer achieves SNI at 8 shares. To reach this, in [BDF+17] it
turned out to be necessary to iterate the refreshing algorithm 3 times. In other
words, one would need to compute

r ⊕ rot(r, 1) ⊕ r′ ⊕ rot(r′, 1) ⊕ r′′ ⊕ rot(r′′, 1) ⊕ x

to achieve SNI at order 7. This requires 3 vectors of uniform randomness, or 48
bytes with AES. We improve this algorithm by computing

r ⊕ rot(r, 1) ⊕ r′ ⊕ rot(r′, 2) ⊕ x .

We verified with the current version of the tool of [BBD+15] that this also
achieves SNI at order 7. Moreover, it requires one less randomness vector. In
the case of AES, we now require 32 bytes of uniform randomness.

181

Chapter 8. Vectorization

Listing 8.2: NEON implementation of refreshing with 8 shares.

//param rand is r register with address of randomness

//param a is q register to refresh

//param tmp is q register that gets overwritten

.macro refresh rand a tmp

vld1.64 {\tmp}, [\rand:128]! //get 16 bytes of randomness

veor \a, \tmp

vext.16 \tmp, \tmp, #1

veor \a, \tmp

vld1.64 {\tmp}, [\rand:128]! //get 16 bytes of randomness

veor \a, \tmp

vext.16 \tmp, \tmp, #2

veor \a, \tmp

.endm

Multiplication – 4 shares. Multiplication in a finite field, or an AND gate in the
case of F2, is trickier to perform in a secure way. Consider the case where one
wants to compute 𝑧 = 𝑥 · 𝑦. Let r and r′ be uniformly random vectors. Then,
with 4 shares, the algorithm suggested in [BDF+17] computes the following to
achieve SNI at order 3:

z = x · y ⊕ r ⊕ x · rot(y, 1) ⊕ rot(x, 1) · y ⊕ rot(r, 1)

⊕ x · rot(y, 2) ⊕ r′ ⊕ rot(r′, 1) .

However, we can again improve this slightly such that less randomness will
be necessary. Let 𝑟4 be a uniformly random value. Then we proved using the
tool of [BBD+15] that the following is also 3rd-order SNI-secure. For AES, this
requires 10 fresh uniformly random bytes (8 for r and 2 for 𝑟4) instead of 16:

z = x · y ⊕ r ⊕ x · rot(y, 1) ⊕ rot(x, 1) · y ⊕ rot(r, 1)

⊕ x · rot(y, 2) ⊕ [𝑟4 , 𝑟4 , 𝑟4 , 𝑟4] .

182

8.3. Vectorizing Masking of AES

Listing 8.3: NEON implementation of multiplication with 4 shares.

//param rand is r register with address of randomness

//param c is d register where result gets stored

//param a and b are d registers to and, remain unchanged

//param tmp and tmpr are d registers that get overwritten

.macro masked_and rand c a b tmp tmpr

vand \c, \a, \b //z = x.y

vld1.64 {\tmpr}, [\rand]! //get 8 bytes of randomness

vext.16 \tmp, \b, \b, #1

veor \c, \tmpr // + r

vand \tmp, \a

veor \c, \tmp // + x.(rot y 1)

vext.16 \tmp, \a, \a, #1

vand \tmp, \b

veor \c, \tmp // + (rot x 1).y

vext.16 \tmpr, \tmpr, #1

veor \c, \tmpr // + (rot r 1)

vext.16 \tmp, \b, \b, #2

vand \tmp, \a

veor \c, \tmp // + x.(rot y 2)

vld1.16 {\tmp[]}, [\rand]! //get 2 bytes of randomness

veor \c, \tmp // + (r4,r4,r4,r4)

.endm

Multiplication – 8 shares. With 8 shares, we use the original algorithm
of [BDF+17] that is SNI at order 7. This requires 3 randomness vectors, which in
the case of AES amounts to 48 bytes:

z = x · y ⊕ r ⊕ x · rot(y, 1) ⊕ rot(x, 1) · y ⊕ rot(r, 1)

⊕ x · rot(y, 2) ⊕ rot(x, 2) · y ⊕ r′

⊕ x · rot(y, 3) ⊕ rot(x, 3) · y ⊕ rot(r′, 1)

⊕ x · rot(y, 4) ⊕ r′′ ⊕ rot(r′′, 1) .

We attempted to reduce this by replacing the last randomness vector by a
vector with a single random value, as in the algorithm for 4 shares, but we found
that this does not achieve SNI at order 7.

183

Chapter 8. Vectorization

Listing 8.4: NEON implementation of multiplication with 8 shares.

//param rand is r register with address of randomness

//param c is q register where result gets stored

//param a and b are q registers to and, remain unchanged

//param tmp and tmpr are q registers that get overwritten

.macro masked_and rand c a b tmp tmpr

vand \c, \a, \b //K = A.B

vld1.64 {\tmpr}, [\rand:128]! //get 16 bytes of randomness

vext.16 \tmp, \b, \b, #1

veor \c, \tmpr // + R

vand \tmp, \a

veor \c, \tmp // + A.(rot B 1)

vext.16 \tmp, \a, \a, #1

vand \tmp, \b

veor \c, \tmp // + (rot A 1).B

vext.16 \tmpr, \tmpr, #1

veor \c, \tmpr // + (rot R 1)

vext.16 \tmp, \b, \b, #2

vand \tmp, \a

veor \c, \tmp // + A.(rot B 2)

vext.16 \tmp, \a, \a, #2

vand \tmp, \b

veor \c, \tmp // + (rot A 2).B

vld1.64 {\tmpr}, [\rand:128]! //get 16 bytes of randomness

vext.16 \tmp, \b, \b, #3

veor \c, \tmpr // + R’

vand \tmp, \a

veor \c, \tmp // + A.(rot B 3)

vext.16 \tmp, \a, \a, #3

vand \tmp, \b

veor \c, \tmp // + (rot A 3).B

vext.16 \tmpr, \tmpr, #1

veor \c, \tmpr // + (rot R’ 1)

vext.16 \tmp, \b, \b, #4

vand \tmp, \a

veor \c, \tmp // + A.(rot B 4)

vld1.64 {\tmpr}, [\rand:128]! //get 16 bytes of randomness

veor \c, \tmpr // + R’’

vext.16 \tmpr, \tmpr, #1

veor \c, \tmpr // + (rot R’’ 1)

.endm

184

8.3. Vectorizing Masking of AES

Randomness. Implementations that are protected using higher-order masking
require a lot of randomness. To be able to prove statistical independence, this
randomness should be fresh and uniformly distributed. For resisting attacks
in practice, it is not so clear whether the exact requirements are this strict. For
instance, it might also be fine to expand a random seed using a pseudo-random
number generator, or even to re-use randomness [BGG+14]. We consider this
discussion to be out of scope of this work. However, because the impact on the
performance can be very significant, we consider various approaches that occur
in the literature. The first is to read all the randomness that we require from
/dev/urandom using fread, like in [BGRV15]. This is the most conservative
approach, but it is rather slow. Second, we also consider the case where all
required randomness is already in a file that needs to be read into memory. The
third approach assumes that there exists a fast true random-number generator
and only considers the cost of a normal load instruction (vld1), like in [GR17].

The AES implementation with 4 shares requires 8 bytes per refresh and
10 bytes per masked AND. In the next section we will see that this amounts to
10 · 32 · (8 + 10) = 5760 random bytes in total for the full AES, excluding the
randomness used to do the initial masking of the input and the round keys.
Naturally, the implementation that computes two blocks in parallel requires
double the amount of random bytes. For 8 shares, refreshing takes 32 bytes and
a masked AND uses 48 bytes, which makes the total 10 · 32 · (32 + 48) = 25 600
bytes.

8.3.3 SubBytes

Using the masked AND and refreshing algorithms, we can build our bitsliced
SubBytes. Several papers have presented optimized bitsliced representations
of the AES S-box. The smallest known to us at the time of the original publi-
cation [GPSS18] was by Boyar and Peralta [BP10]. It uses 83 XORs/XNORs and
32 ANDs, which was shortly after improved to 81 XORs/XNORs and 32 ANDs. The

185

Chapter 8. Vectorization

few NOTs can be moved into the key expansion, so we only need to consider
XORs and ANDs. We used this implementation as our starting point, as this is also
the implementation with the smallest number of binary ANDs, and an ANDwill
be much slower to compute than a XOR. More recent improvements to the AES
S-box have not reduced the number of nonlinear operations [ME19; RTA18].

We have used the compiler provided in [BBD+16] to generate a first masked
implementation of SubBytes. This tells us when it is necessary to refresh a value,
making sure that we do not refresh more often than strictly necessary. For our
version of SubBytes, however, the compiler adds a refresh on one of the inputs
for every AND. Then we implement an XOR on multiple shares in parallel with
a veor instruction. For an AND, we use the algorithms of the previous section.
Finally, the code has been manually optimized to limit pipeline stalls.

The S-box implementation has many intermediate variables. With 4 shares
and a single block, the d registers are used. There are 32 of them and this turns
out to be sufficient to store all the intermediate values. With two blocks or
with 8 shares, however, we can use only 16 q registers. This implies that values
have to be spilled to the stack. Of course, we want to minimize the overhead
caused by this. In [SS16c], an instruction scheduler and register allocator for the
ARM Cortex-M4 was used to optimize the number of pushes to the stack. We
modified this tool to handle the NEON instructions that we need, and use it to
obtain an implementation with 18 push instructions and 18 loads.

According to a cycle-count simulator,1 our SubBytes implementation takes
1035 cycles with one block and 4 shares and 2127 cycles with 8 shares.

8.3.4 Linear Layer

We now discuss the linear operations of AES. We manually optimized them
using the same cycle-count simulator to hide as many latencies as possible.

1 http://pulsar.webshaker.net/ccc/index.php?lng=us. Note that the subdomain no longer
resolves. Add 185.16.44.200 pulsar.webshaker.net to your hosts file to visit this.

186

http://pulsar.webshaker.net/ccc/index.php?lng=us

8.3. Vectorizing Masking of AES

AddRoundKey. AddRoundKey loads the round key with the vld1 instruction
and adds it to the state using veor. The loads and arithmetic instructions can
be interleaved. This helps because they go into separate NEON pipelines. An
arithmetic instruction can then be executed in parallel with the load of the next
part of the round key. For the loads, we make sure that they are aligned to at
least 64 bits. AddRoundKey then only takes 10 cycles.

ShiftRows. With ShiftRows, rotations by fixed distances over 16 bits need
to be computed. This can be implemented using vand, vsra, vshl, and vorr
instructions. The arithmetic pipeline is now clearly the bottleneck. According to
the simulator, our ShiftRows takes 150 cycles.

MixColumns. MixColumns requires more rotations by 4 or by 12 over 16 bits.
This takes 106 cycles as measured by the simulator.

8.3.5 Performance

We benchmark our implementations on the BeagleBone Black with the clock
frequency fixed at 1 GHz. In other words, we disabled frequency scaling. For
the rest, we did not apply any changes to a standard Debian Linux 9 installation.
In particular, we did not disable background processes and did not give our
process special priority or CPU core affinity. The implementations are run 10 000
times and the median cycle counts are given in Table 8.1.

When using /dev/urandom, more than 99% of the time is spent on waiting for
randomness, which is delivered at a rate of only 369 cycles per byte in the 8-share
case. With a faster RNG, it becomes clear that our implementations are very
fast and practical. We reach 474 cycles/byte with 4 shares and 1 476 cycles/byte
with 8 shares with pre-loaded randomness. Note that all implementations are
fully unrolled, so the code size can trivially be decreased to roughly a tenth
when this is a concern. However, we do not expect this to be an issue for devices
with a Cortex-A8 or similar microprocessors, as they are relatively high-end.

187

Chapter 8. Vectorization

4 shares
1 block

4 shares
2 blocks

8 shares
1 block

Clock cycles
(randomness from /dev/urandom)

1 598 133 4 738 024 9 470 743

Clock cycles
(randomness from normal file)

14 488 17 586 26 601

Clock cycles
(pre-loaded randomness)

12 385 15 194 23 616

Random bytes 5 760 11 520 25 600
Stack usage in bytes 12 300 300
Code size in bytes 39 748 44 004 70 188

Table 8.1: Performance of our masked AES implementations.

Comparison to related work. In the following we discuss how our implemen-
tation compares to related work. We note that one should be cautious when it
comes to comparing cycle counts, in particular when benchmarks were obtained
on different microarchitectures or from simulators.

Goudarzi and Rivain [GR17] compared the performance of different higher-
order masking approaches on ARM architectures. A simplified model is assumed
for the number of cycles that specific instructions take, without referring to a
specific microarchitecture. Private communication made clear that they are
derived from the Keil simulator based on an ARM7TDMI-S. Their fastest bitsliced
implementation is claimed to take 120 972 cycles with 4 shares and 334 712 cycles
with 8 shares. To achieve this performance, the presence of a fast TRNG is
assumed that delivers fresh randomness at 2.5 cycles per byte. Only the cost
of a normal ldr instruction it taken into account, which corresponds to our
performance with pre-loaded randomness. Despite the differences between
ARMv4T and ARMv7-A, it is clear that there is quite a performance gap.

188

8.3. Vectorizing Masking of AES

Wang, Vadnala, Großschädl, and Xu [WVGX15] presented a masked AES
implementation for NEON that appears to run in 14 855 cycles with 4 shares and
77 820 with 8 shares on a Cortex-A15 simulator. This uses a cheap LFSR-based
PRNG to provide randomness of which the authors already say that it should
be replaced by a better source of randomness. We require less randomness
due to a different masking scheme and apply bitslicing instead of computing
SubBytes with tower-field arithmetic. The Cortex-A15 is more modern and
powerful than the Cortex-A8. It can decode 3 instructions instead of 2, has
out-of-order execution, and its NEON unit has a 128-bit wide datapath instead
of 64-bit. However, it has longer pipelines which means that the penalty for,
for instance, wrong branch predictions will be higher. We ran their code on
our Cortex-A8-based benchmarking device and measured 34 662 cycles for the
4-share implementation and 158 330 cycles for the 8-share implementation, but
we cannot fully explain the difference due to the amount of possible causes and
the unavailability of more detailed information.

Balasch, Gierlichs, Reparaz, and Verbauwhede [BGRV15] do use the same
microarchitecture, but not the NEON SIMD processor. They do not mention the
performance of their implementation. They explicitly say that they focus on the
security evaluation and do not aim to achieve a high-throughput implementation.

Finally, Journault and Standaert [JS17] consider a bitsliced AES implementa-
tion with up to 32 shares on an ARM Cortex-M4. They exploit the parallelism of
the shares, but not of AES itself as there are only 32-bit registers. An on-board
TRNG is used to provide randomness at a reported speed of 20 cycles per byte.
They use the refreshing and multiplication algorithms of [BDF+17] and almost
the same S-box baseline implementation. Eventually, they report that 2 783 510
cycles are required to compute AES with 32 shares, of which 73% are spent on
generating randomness. While this is certainly a very interesting idea, we show
how the parallelism in SubBytes can additionally be exploited on a higher-end
CPU with vector registers when using fewer shares might be sufficient.

189

Chapter 8. Vectorization

Compared to unmasked implementations, there is of course still a noticeable
performance penalty for adding side-channel protections. The unmasked
bitsliced AES implementation of Bernstein and Schwabe [BS12] also exploits
NEON to run at 19.12 cycles per byte (i. e., 306 cycles per block) in CTR mode,
but that uses counter-mode caching and processes 8 blocks in parallel.

8.4 Side-Channel Evaluation

8.4.1 Measurement Setup

Balasch, Gierlichs, Reparaz, and Verbauwhede [BGRV15] described in detail
how they performed DPA attacks on a BeagleBone Black running at 1 GHz.
Our experimental setup and measuring environment follow their approach.
The board is running Debian Jessie and has several processes running in the
background. We power the board using a standard AC adapter and connect it
to the measurement PC over Ethernet. A few lines of Python on the BeagleBone
open a TCP socket and spawn a new AES process for every input that it receives.
The measurement PC connects to the socket and sends inputs over Ethernet.

We use a LeCroy WaveRunner 8404M-MS oscilloscope with a bandwidth of 4
GHz, operating at a sampling rate of 2.5 GSamples/sec. The AES process sets a
GPIO port high before the execution of AES and sets it low after AES is finished,
so that it can be used as the trigger signal. We place a magnetic field probe
from Langer, model RF-B 0.3-3, with a small tip on the back of the BeagleBone
board, near capacitor 66. The probe is connected to a Langer amplifier, model
PA 303 SMA. The acquired traces were post-processed in order to perform signal
alignment. We note that OS-related interrupts in conjunction with time-variant
cache behavior result in a fairly unstable acquisition process. Thus, the evaluator
has to either discard a large portion of the acquired trace set or resort to more
sophisticated alignment techniques such as elastic alignment [vWB11].

190

8.4. Side-Channel Evaluation

8.4.2 Security Order Evaluation

Since our implementation uses SNI gadgets, it maintains theoretical security
against probing attacks of order 𝑑 − 1 or less. The natural starting point of our
side-channel evaluation is to identify any discrepancy between the theoretical
and the actual security order, i. e., to determine the real-world effectiveness
of the masking scheme. To achieve that goal, we need to assess whether
the shares leak independently or whether the leakage function recombines
them. Such recombinations can be captured by evaluating the security order
in the bounded-moment model [BDF+17] using, e. g., the leakage-detection
methodology [CDG+13; SM15; ZDD+18].

Several lines of work have observed divergence between the theoretical
order of a masking scheme and its real-world counterpart. Initially, Balasch,
Gierlichs, Grosso, Reparaz, and Standaert [BGG+14] put forward the issue of
distance-based leakages, which can result in the order reduction of a scheme.
Specifically, if a (𝑑 − 1)th-order scheme is implemented on a device that exhibits
distance-based leakages, its actual order will reduce to ⌊(𝑑 − 1)/2⌋, damaging
its effectiveness w.r.t. noise amplification. Such effects have been observed in
numerous architectures such as AVR, 8051 [BGG+14], ARM Cortex-M4 [GPP+17],
and FPGAs [CBG+17] and stem from both architectural choices and physical
phenomena. To some extent, they can be mitigated by either increasing the
order of the scheme or by hardening the implementation against effects that
breach the independence of shares [PV17].

We evaluate the security order using the leakage-detection methodology
known as TVLA [CDG+13], which emphasizes detection over exploitation in
order to speed-up the procedure. To make the evaluation feasible w.r.t. data
complexity, we focus on the first round of our single-block 4-share imple-
mentation and employ the random vs. fixed Welch 𝑡-test, which uses random
and fixed plaintexts acquired in a nondeterministic and randomly interleaved
manner. Consecutively, we perform univariate 𝑡-tests of orders 1 through 4

191

Chapter 8. Vectorization

using the incremental, one-pass formulas of Schneider and Moradi [SM15]
at a level of significance 𝛼 = 0.00001. The results are plotted in Figure 8.2.
Note that the number of samples per trace is fairly high due to the lengthy
computation of the 4-share masked AES round and due to the high sampling
rate dictated by the clock frequency (1 GHz) and the Nyquist theorem. As
a result, the 𝑡-test used in TVLA faces the issue of multiple comparisons
and we need to control the familywise error rate using the Šidák correction
𝛼𝑆𝐼𝐷 = 1 − (1 − 𝛼)1/#samples [Šid67]. The leakage-detection threshold is then
computed using the formula 𝐶𝐷𝐹−1

𝒩(0,1)(1 − 𝛼𝑆𝐼𝐷/2), which equals to 6.25 when
testing 25k samples per trace [ZDD+18].

In Figure 8.2 we observe that for orders 1 and 2, a 1M random vs. 1M fixed
𝑡-test does not reject the null hypothesis, thus no leakage is detected in the
first two statistical moments. The situation is different for higher orders: both
the 3rd and the 4th-order univariate 𝑡-tests are able to detect leakage. This
demonstrates that the actual security order of the implementation is less than
the theoretical one and detecting the presence of 3rd-order leakage is in fact
easier than detecting 4th-order leakage. Interestingly, the experimental results
are not in direct accordance with the order reduction suggested by [BGG+14],
i. e., our 3rd-order (4-share) implementation achieves practical order of 2, while
the theorized reduction suggests ⌊3/2⌋ = 1st-order security.

An additional way to approach the order reduction issue is to phrase it
as a leakage certification problem [DSP16; DSV14]. The leakage certification
procedure allows us to assess the quality of a leakage model w.r.t. estimation
and assumption errors. Gauging the effect of estimation errors, i. e., those that
arise from insufficient profiling, is straightforward and can be carried out via
cross-validation techniques [ET93]. Assumption errors are more difficult to
assess, since they arise from incorrect modeling choices and would ideally
require the comparison between the chosen model and an unknown perfect
model. To tackle this, the indirect approach of Durvaux, Standaert, and Veyrat-
Charvillon [DSV14] observes the relation between estimation and assumption

192

8.4. Side-Channel Evaluation

0 5 10 15 20 25
Time samples ×103

0
1
2
3
4
5
6

t

(a) 1st order

0 5 10 15 20 25
Time samples ×103

0
1
2
3
4
5
6

t
(b) 2nd order

0 5 10 15 20 25
Time samples ×103

0
2
4
6
8

10
12

t

(c) 3rd order

0 5 10 15 20 25
Time samples ×103

0
1
2
3
4
5
6
7

t

(d) 4th order

Figure 8.2: Univariate leakage detection, 1M random vs. 1M fixed.

errors and if the latter are negligible in comparison, they conclude that the
chosen model is adequate.

In our approach, we use the 𝑡-test-based certification toolset of Durvaux, Stan-
daert, and Del Pozo [DSP16], which focuses on the assumption and estimation
errors for each statistical moment. Initially, we start with an erroneous model for
our 4-share implementation: we assume that the leakage is sufficiently captured
by a Gaussian template, i. e., a normal distribution that is fully described by
the first two statistical moments. The results are visible in the upper part of
Figure 8.3, using a trace set of size 900 000. In particular, we plot the 𝑝-value

193

Chapter 8. Vectorization

of a 𝑡-test that compares an actual statistical moment (estimated from the trace
set) with a simulated statistical moment (estimated by sampling the profiled
model). A high 𝑝-value (i. e., a mostly white image) indicates that estimation
errors overwhelm assumption errors and that the chosen model is adequate. A
small 𝑝-value indicates that assumption errors are larger than estimation errors,
thus the chosen model is erroneous. The process is repeated for all first four
statistical moments (mean, variance, skewness, kurtosis) using cross-validation.

Figure 8.3: Leakage certification 𝑝-values for Gaussian templates and Pearson
type I distributions.

In the first two images of Fig. 8.3 (upper part, mean and variance), the
high 𝑝-values indicate that these moments are well-captured by the model.
Naturally, the fourth image (upper part, kurtosis) is black, indicating that the
model disregards the 4th moment of a parallel 4-share implementation which
should (in theory) contain useful information. Interestingly, the third image
(skewness) is also black, penalizing any model that does not include the 3rd
statistical moment, although in a perfect scheme it should not convey any

194

8.4. Side-Channel Evaluation

information. We continue this approach with a more adequate model for the
4-share implementation: we assume that the leakage is captured by a Pearson
type I distribution [SMSG16], i. e., a 4-moment Beta distribution. The results
are visible in the lower part of Fig. 8.3 and show that the assumption errors in
the 3rd and 4th moments tend to be smaller than the corresponding estimation
errors.

As demonstrated by both the 𝑡-test methodology and the leakage certification
process, the NEON-based implementations on ARM Cortex-A8 are likely to
be subject to order reduction and may require further hardening to prevent
dependencies between shares. The potential causes of the order reduction
remain unexplored since they may stem from bus/register/memory transitions,
pipelined data processing or even electrical coupling effects. Pinpointing the
origin of the security reduction remains an open problem in the side-channel
field since it essentially requires the countermeasure designer to access/modify
the hardware architecture and chip layout, a task that is not possible with
proprietary designs.

8.4.3 Information-Theoretic Evaluation

Having investigated the security order of the single-block 4-share AES imple-
mentation, we turn to the evaluation of its 8-share counterpart. The core feature
of a masking scheme is the noise amplification stage. Assuming sufficient noise,
it has been shown that the number of traces required for a successful attack
grows exponentially w.r.t. the order 𝑑−1 [CJRR99]. As a result, the evaluation of
the proposed 8-share implementation can be beyond the measurement capability
of most evaluators. To tackle this issue, we will rely on an information-theoretic
approach used by Standaert et al. and Journault et al. [JS17; SMY09; SVO+10],
assisted by the bound-oriented works of Prouff and Rivain [PR13], Duc, Faust,
and Standaert [DFS15], and Grosso and Standaert [GS18].

195

Chapter 8. Vectorization

Analytically, we start with an unprotected (single-share) AES implementation
and estimate the device/setup signal-to-noise ratio (SNR). We define the random
variable 𝑆 to correspond to the sensitive (key-dependent) intermediate values
that we try to recover. Likewise, we define the random variable 𝐿 to correspond
to the time sample that exhibits high leakage (heuristically chosen as the sample
with the highest 𝑡-test value). Subsequently, we profile Gaussian templates for
all sensitive values 𝑠 that are instances of variable 𝑆. In other words, we estimate
P̂r[𝐿|𝑠] ∼ 𝒩(𝜇̂𝑠 , 𝜎̂2

𝑠) for all 𝑠. Using the estimated moments, we compute
the SNR as the ratio Var(𝜇̂𝑠)/E(𝜎̂2

𝑠), resulting in SNR ≈ 0.004. We continue
to compute the Hypothetical Information (HI) which shows the amount of
information leaked if the leakage is adequately represented by the estimated
model P̂r.

HI(𝑆; 𝐿) = H(𝑆) +
∑
𝑠∈𝒮

Pr[𝑠] ·
∑
𝑙∈𝐿

P̂r[𝑙 |𝑠] · log2 P̂r[𝑠 |𝑙],

where P̂r[𝑠 |𝑙] = P̂r[𝑙 |𝑠]∑
𝑠∗∈𝒮 P̂r[𝑙 |𝑠∗]

.

To simplify the evaluation process, we employ the independent shares’
leakage assumption so as to extrapolate the information of a single share
to the information of a 𝑑-tuple of shares. Thus, in order to obtain the HI
bounds for security orders 3 and 7, we raise HI(𝑆; 𝐿) to the security order.
In addition, the evaluator should take special consideration w.r.t. horizontal
exploitation [BCPZ16; VGS14], which can be particularly hazardous, e. g., in the
context of lengthy masked multiplications. To showcase such a scenario, we
employ the bound of Prouff and Rivain [PR13], stating that the multiplication
leakage is roughly 1.72𝑑 + 2.72 times the leakage of a 𝑑-tuple of shares. The
results of the information-theoretic evaluation are visible in Fig. 8.4.

Figure 8.4 assesses the performance of the proposed 8-share AES imple-
mentation, using information-theoretic bounds. The solid line shows the ideal
masking performance, while the dashed line shows a conservative masking

196

8.5. Conclusion and Outlook

−3 −2 −1 0 1 2 3 4
−35

−30

−25

−20

−15

−10

−5

0

5
Device SNR

log10 SNR

lo
g 10

H
I

Ideal
Conservative

Conservative horizontal

Figure 8.4: Information-theoretic evaluation of the 8-share implementation.

performance due to order reduction from order 7 to order 3. Last, the dotted
line demonstrates the scenario where the adversary exploits the order-reduced
(conservative) version in a horizontal fashion, i. e., (s)he incorporates all inter-
mediate values computed during a masked AES multiplication. For the current
SNR of the device, the measurement complexity is bounded by approximately
291 measurements (ideal case), 245 (conservative case) and 242 (conservative
horizontal case) [DFS15].

8.5 Conclusion and Outlook

We have shown how higher-order masking of AES can be sped up using NEON
vector registers. With a good randomness source, such implementations are very
fast and practical. We also performed a side-channel evaluation to study the
security order of the single-block 4-share implementation and an information-

197

Chapter 8. Vectorization

theoretic analysis to bound the measurement complexity w.r.t. the 8-share
implementation.

Future SCA work can delve deeper into order-reduction issues, in conjunction
with multivariate and horizontal exploitation. For instance, with our high-
order univariate methodology, it is implicitly assumed that all the shares are
manipulated in parallel. While this appears to hold when looking at the
NEON assembly specifications, full parallelism may not be enforced on a
hardware level. A deeper inspection of the circuitry could potentially clarify the
actual parallelism and identify the underlying issues behind order reduction.
Moving toward multivariate exploitation, practical horizontal attacks such as
soft-analytical attacks need to be carried out such that we can gauge in practice
the detrimental effects of lengthy leaky computations and establish a fairer
evaluation procedure.

198

Chapter 9
Reusing Randomness

Another approach to optimize masking countermeasures is to reduce the number of

random bits that are required. This chapter explores what is possible with just two random

bits that are carefully reused. In comparison to the original publication [GSD+19], the

appendix has been merged into the text and minor textual edits have been made.

9.1 Introduction

Ever since the findings of Kocher, Jaffe, and Jun [KJJ99] on differential power
analysis and Quisquater and Samyde [QS01] on electromagnetic emanation
analysis, the efficient protection against so-called side-channel attacks has been
eagerly studied. Over the years, masking has proven to be a countermeasure
with high and well-understood security guarantees [DDF14; ISW03] as well as
good scalability [CJRR99]. Despite its popularity, the research on more efficient
approaches to mask security-critical implementations does not seem to come to
an end soon [BGN+14; GIB18; GM17; GMK16; NRR06; RBN+15].

The lion’s share of works on masking operate in the so-called 𝑡-probing
model by Ishai, Sahai, and Wagner [ISW03]. In this model, an adversary is
allowed to probe up to 𝑡 intermediate values in an implementation. One has
security against such an adversary if those 𝑡 wires reveal no secret information.
Despite the fact that this model has been shown to be insufficient in practice
by several works [BGG+14; FGP+18; PV17], it remains the foundation for many
new masking schemes.

One important drawback of most types of masking is their implementation
costs, not least because of their high demand for fresh randomness. Since
the creation of large amounts of fresh random bits requires additional time,

199

Chapter 9. Reusing Randomness

chip area, energy, etc., a lot of research has been done on more randomness-
efficient masking [BBP+16; BBP+17; BDCU17; BDF+17; FPS17; GD17; GM18;
GMK16; Sug18]. Most of the existing work, however, focuses on the randomness
optimization for specific masking gadgets, like masked AND gates, and do not
consider the minimization of the overall randomness costs. An interesting result
from prior work is the proof by Faust et al. [FPS17] that first-order masking
with only one bit of randomness is impossible. They also demonstrated the
theoretical possibility of masking with constant randomness cost.

Even more of the masking implementation papers only consider the so-called
online randomness costs spent on producing fresh randomness to secure the
computation once the initial sharing of the input data, e. g., plaintext, ciphertext,
or data and key material, has been performed. There is, to the best of our
knowledge, no paper that considers the minimization of randomness costs when
taking the masking of the input data into account or that tries to minimize the
overall randomness costs.

Our contribution. We start off this work in Section 9.2 by taking a step away from
the modern sharing-based perspective of masking back to the classical Boolean
masking perspective. From this masking point of view, we then demonstrate
using linear transformations that first-order masking is theoretically possible
with only two random one-bit masks. We then discuss what properties need to be
fulfilled such that this approach also works for masked nonlinear transformations
and show that existing approaches of masked AND gates do not fulfill these
criteria. As a first practical contribution, we design a masked AND gate that
allows reusing randomness from its inputs safely.

Based on our findings, we introduce in Section 9.3 a simple rule-based
system. These rules can be encoded in SMT2 statements and they are then used
to automatically check whether the masking approach is directly applicable to
an unprotected implementation or if modifications (mask changes) are required.

200

9.2. Masking without Online Randomness

Upon acceptance, our tool synthesizes a securely masked implementation for a
given set of additional constraints like the used mask encoding.

We then show how our approach can be applied to larger implementations
(Section 9.4) and demonstrate its feasibility and its impact on a full AES-128
encryption-only implementation in Section 9.4.3. With our approach, we
successfully designed the first formally verified AES S-box design that requires
only two random bits for the initial sharing of its inputs and requires no online
randomness to achieve first-order security in the probing model. Even when
going for a full AES implementation, the randomness requirements do not
increase further. However, since existing formal tools are not yet efficient
enough to digest a fully unrolled AES implementation, we instead verify each
building block of our design using the maskVerif tool of Barthe et al. [BBC+19]
for a predefined mask encoding of its inputs and outputs. Ensuring the same
mask encoding for each input and output allows us to argue about the security
when putting the components together in the full AES implementation. Details
on the formal verification are given in Section 9.6.1. Finally, we discuss the
limitations of the 𝑡-probing model for security in practice, as exemplified by our
construction, in Section 9.6.3.

As a final contribution, we make our tool as well as our masking examples
publicly available such that our findings are verifiable and future works can
build upon them. They can be found at https://github.com/LaurenDM/TwoRa
ndomBits.

9.2 Masking without Online Randomness

The goal of masking is to make the power consumption (and other side-channels
related to the power consumption) independent of security-sensitive information.
For this purpose, the security-sensitive information is first combined with
uniformly random sampled data in an invertible masking function, such that the
representation of the data itself becomes uniformly random distributed. In the

201

https://github.com/LaurenDM/TwoRandomBits
https://github.com/LaurenDM/TwoRandomBits

Chapter 9. Reusing Randomness

case of Boolean masking, the sensitive information 𝑠, for instance, is combined
with a random mask 𝑚 by using the Boolean exclusive-or (XOR) operation. The
resulting masked value 𝑠0 = 𝑠 ⊕ 𝑚0 thus becomes statistically independent of 𝑠,
i. e., the mutual information between 𝑠 and 𝑠0 becomes zero. For this reason,
any computation on 𝑠0 trivially results in power consumption that is statistically
independent of 𝑠 as long as 𝑚0 is not recombined with 𝑠0.

Adversary model. The security of masked implementations is often expressed
in the so-called 𝑡-probing model [ISW03] which assumes that an attacker can
make up to 𝑡 observations in the implementation (place up to 𝑡 probes on the
circuit). It has been verified in the past that this formal model also implies
security against an attacker who employs differential side-channel analysis and
who has access to noisy side-channel leakage traces [DDF14]. In the following
we assume a first-order attacker, i. e., an attacker who can place a single probe
on the device.

Sharing vs. masking. Often in the present literature, the relation between the
masked data 𝑠0 and the mask(s) 𝑚0 is expressed using a sharing-based notation.
For first-order masking (i. e., only one mask is used to protect 𝑠) the secret
value is assumed to be split into two shares (e. g., 𝑠0 and 𝑠1) such that again
the additive relation 𝑠 = 𝑠0 ⊕ 𝑠1 is fulfilled. While it is trivial to convert from a
masking representation to a sharing representation by setting 𝑠0 = 𝑠 ⊕ 𝑚 and
𝑠1 = 𝑚, the sharing representation inherently hides the relation between secret
information and masks.

For brevity reasons, we use the sharing-based representation in most parts
of this chapter. Since in this work, we are particularly interested in the relation
between secrets (or shares) and masks, we often switch to the masking form. To
make the used notation clearer, we always use the prefix 𝑚 for masks followed
by a number in the subscript. Any other variable name with a suffix subscript
number denotes a specific share of the variable. Most of the time we just use

202

9.2. Masking without Online Randomness

0 or 1 in the subscript (e. g., 𝑎0 or 𝑎1) to refer to the first or second share of a
first-order masked variable 𝑎, respectively. Without any subscript notation we
always refer to the plain secret variable (𝑎, 𝑏, 𝑞, . . .).

9.2.1 Computation on Masked Data

To realize computations that are not only secure against side-channel analysis but
also correct, the computed masked function needs to take the mask into account
but in a way that does not unmask the data. For example, when calculating the
XOR of two sensitive variables as 𝑞 = 𝑎 ⊕ 𝑏, where 𝑎 is shared in the two shares 𝑎0

and 𝑎1 and 𝑏 is shared as 𝑏0 and 𝑏1, the correct and securely masked realization
is trivial:

𝑞0 = 𝑎0 ⊕ 𝑏0

𝑞1 = 𝑎1 ⊕ 𝑏1
(9.1)

With independent masks. When observing the masked representation of this
equation with 𝑎0 = 𝑎 ⊕𝑚0, 𝑎1 = 𝑚0 and 𝑏0 = 𝑏 ⊕𝑚1, 𝑏1 = 𝑚1 the correctness can
be easily observed when considering the addition of the shares of 𝑞, because both
shares added together result in the desired operation in the sensitive variables 𝑎
and 𝑏.

𝑞 = 𝑞0 ⊕ 𝑞1

= (𝑎 ⊕ 𝑚0) ⊕ (𝑏 ⊕ 𝑚1) ⊕ 𝑚0 ⊕ 𝑚1

= 𝑎 ⊕ 𝑏

To demonstrate the first-order security of the masked realization of the XOR
in Eq. (9.1), it needs to be shown that each intermediate value (in this case only
the output shares 𝑞0 and 𝑞1) is statistically independent of 𝑎 and 𝑏. Statistical
independence is given because we assume that each of the two masks 𝑚0 and

203

Chapter 9. Reusing Randomness

𝑚1 is uniformly random and statistically independent of each other. By looking
at the truth table for both shares of 𝑞 in Table 9.1, one can observe that, when
subdividing the truth table into the four possible combinations of values for 𝑎
and 𝑏, the count of “1” appearances (or equivalently the Hamming weight of
the truth table) for 𝑞0 and 𝑞1 in each case are equal.

Table 9.1: Truth table of the masked XOR from Eq. (9.1).

Shares Secrets TT
𝑎0 𝑎1 𝑏0 𝑏1 𝑎 𝑏 𝑎 ⊕ 𝑏 𝑞0 𝑞1

0 0 0 0

0 0 0

0 0
0 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 0

Hamming weight 2 2
0 0 0 1

0 1 1

0 1
0 0 1 0 1 0
1 1 0 1 1 0
1 1 1 0 0 1

Hamming weight 2 2
0 1 0 0

1 0 1

0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 1

Hamming weight 2 2
0 1 0 1

1 1 0

0 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 0 1 0

Hamming weight 2 2

This equal distribution for each possible combination of secrets, results in
power consumption that is on average equal for all cases of 𝑎 and 𝑏. We note that
an attacker with the ability to probe more signals could observe differences by

204

9.2. Masking without Online Randomness

combining multiple probed signals. Higher-order leakages, however, are more
difficult to exploit than the average power consumption (exponentially more
observations are required [CJRR99]) and are not considered in this chapter.

With equal masks. The situation changes when assuming that both masked
variables use the same mask 𝑚0 = 𝑚1, which trivially reveals 𝑎 and 𝑏 in the
equation of 𝑞0.

𝑞0 = 𝑎0 ⊕ 𝑏0 = (𝑎 ⊕ 𝑚0) ⊕ (𝑏 ⊕ 𝑚0) = 𝑎 ⊕ 𝑏

Most state-of-the-art masking works assume that shares are produced using
independent random masks which helps to avoid such situations. So when
multiple XOR operations are chained together (e. g., 𝑎 ⊕ 𝑏 ⊕ 𝑐 ⊕ · · · ⊕ 𝑧) a lot of
random masks are accumulated.

𝑞0 = 𝑎0 ⊕ 𝑏0 ⊕ 𝑐0 ⊕ · · · ⊕ 𝑧0

= (𝑎 ⊕ 𝑚0) ⊕ (𝑏 ⊕ 𝑚1) ⊕ (𝑐 ⊕ 𝑚2) ⊕ . . . (𝑧 ⊕ 𝑚25)

𝑞1 = 𝑎1 ⊕ 𝑏1 ⊕ 𝑐1 ⊕ · · · ⊕ 𝑧1

= 𝑚0 ⊕ 𝑚1 ⊕ 𝑚2 ⊕ · · · ⊕ 𝑚25

Please note that we assume here and in the remainder of this chapter that
the masked equations are evaluated from left to right, and parentheses indicate
atomic operations that do not produce further intermediate results (often to
indicate the result of the evaluation of a sharing function or initial sharings). Our
first and admittedly rather trivial observation is that the amount of accumulated
randomness is unnecessarily high. One can realize the same function in a secure
and correct shared way by simply alternating two random masks 𝑚0 and 𝑚1 in
such a way that at no time an intermediate result is formed that depends on the
secret value without a mask. One possible realization is to use 𝑚0 to mask 𝑎
and use 𝑚1 for the remaining variables:

205

Chapter 9. Reusing Randomness

𝑞0 = (𝑎 ⊕ 𝑚0) ⊕ (𝑏 ⊕ 𝑚1) ⊕ (𝑐 ⊕ 𝑚1) ⊕ . . . (𝑧 ⊕ 𝑚1)

= 𝑎 ⊕ 𝑏 ⊕ 𝑐 ⊕ · · · ⊕ 𝑧 ⊕ 𝑚′

𝑞1 = 𝑚0 ⊕ 𝑚1 ⊕ 𝑚1 ⊕ · · · ⊕ 𝑚1

= 𝑚′

where 𝑚′ = 𝑚0 if the number of inputs is odd (and thus the number of 𝑚1 masks
is even) and else 𝑚′ = 𝑚0 ⊕ 𝑚1.

This is only one example and there exist many other possible and secure
realizations for this function. Depending on the mask assignments to the inputs,
the resulting mask of the output can be either 𝑚0 or 𝑚1 or their combination
𝑚0 ⊕ 𝑚1. With these findings, we can secure any linear function likewise.
However, extending this to nonlinear functions is not straightforward.

9.2.2 Application to Nonlinear Gates

There exists a vast variety of first-order masked AND gates in the literature
which form the simplest class of nonlinear functions and are used to construct
more complex functions. These realizations of masked AND gates usually vary
regarding online randomness requirements and the number of used input and
output shares. The underlying functionality is of course always the same and,
in the case of a realization with two shares, it requires the secure evaluation of
four multiplication terms (where ∧ represents a single AND operation):

𝑞 = 𝑎 ∧ 𝑏 = (𝑎0 ⊕ 𝑎1) ∧ (𝑏0 ⊕ 𝑏1)

= 𝑎0 ∧ 𝑏0 ⊕ 𝑎0 ∧ 𝑏1 ⊕ 𝑎1 ∧ 𝑏0 ⊕ 𝑎1 ∧ 𝑏1
(9.2)

Any direct combination of either two multiplications terms (e. g., 𝑎0 ∧ 𝑏0 ⊕
𝑎0 ∧ 𝑏1) is insecure because it leads to a function that statistically depends on the
secret 𝑎 or 𝑏. Most of the existing masked AND gadgets thus use fresh random
masks to realize the secure evaluation, like 𝑚2 is used in the following example.

206

9.2. Masking without Online Randomness

𝑞0 = 𝑎0 ∧ 𝑏0 ⊕ 𝑚2 ⊕ 𝑎0 ∧ 𝑏1

𝑞1 = 𝑎1 ∧ 𝑏0 ⊕ 𝑚2 ⊕ 𝑎1 ∧ 𝑏1
(9.3)

This masked AND gate is indeed secure as long as the order of execution is
from left to right and the masks including the ones used for sharing 𝑎 and 𝑏

are statistically independent and uniformly distributed. Another advantage
of this realization is that it inherently refreshes the sharing which makes the
result independent of 𝑎 and 𝑏. Any linear or nonlinear combination of 𝑞 with
the sharing of 𝑎 or 𝑏 is thus still possible, as long as the transformation itself is
secure under the assumption of independently shared inputs.

Without fresh randomness. There also exist realizations of a masked AND gate
that do not require any fresh randomness. As an example, we consider the
following equations from Biryukov et al. [BDCU17] where ∨ is the OR operation:

𝑞0 = 𝑎0 ∧ 𝑏0 ⊕ (𝑎0 ∨ ¬𝑏1)

𝑞1 = 𝑎1 ∧ 𝑏0 ⊕ (𝑎1 ∨ ¬𝑏1)
(9.4)

A closer look at the properties of this realization from Biryukov et al. in
Table 9.2 reveals that, while the masking itself is secure, a further (linear)
combination with shares or combinations of shares from 𝑎 and 𝑏 (barring 𝑎0 ⊕ 𝑎1)
can make the sharing insecure again. Because this masked AND gate is insensitive
to combinations with a single share from 𝑎 (cf. column 𝑞0 ⊕ 𝑎0 in Table 9.2), one
could assume that 𝑞 is similarly protected as an XOR gate is protected by the mask
𝑚1 of 𝑏. The problem is that this masked AND gate behaves entirely different
than the masked XOR gate from Eq. (9.1) or the masked AND from Eq. (9.3). For
the output of a masked XOR gate where 𝑞0 = 𝑎 ⊕ 𝑏 ⊕ 𝑚1, we may assume that
an XOR with 𝑚0 followed by the addition of 𝑚1 would result in a secure sharing
masked by 𝑚0, since (𝑎 ⊕ 𝑏 ⊕ 𝑚1) ⊕ 𝑚0 ⊕ 𝑚1 results in 𝑎 ⊕ 𝑏 ⊕ 𝑚0. However, in

207

Chapter 9. Reusing Randomness

Table 9.2: Truth table for 𝑞0 of Biryukov et al.’s masked AND.

Shares Secrets TT
𝑎0 𝑏0 𝑏1 𝑏 𝑞0 𝑞0 ⊕ 𝑎0 (𝑞0 ⊕ 𝑎0) ⊕ 𝑏0

0 0 0

0

1 1 1
0 1 1 0 0 1
1 0 0 1 0 0
1 1 1 0 1 0

Hamming weight 2 2 2
0 0 1

1

0 0 0
0 1 0 1 1 0
1 0 1 1 0 0
1 1 0 0 1 1

Hamming weight 2 2 0

case of the masked AND gate from Eq. (9.4), the XOR combination of the output
𝑞0 with 𝑚0 followed by another XOR with 𝑚1 results in an insecure sharing (see
different truth table Hamming weights for different cases of 𝑏 in Table 9.2).
Chaining of masked AND operations by carefully selecting (or changing) between
two different masks is thus not possible with this masked AND gate.

9.2.3 Construction of a New Masked AND

We first transform the secure equations of Biryukov et al. such that we can
directly observe what happens to the multiplication terms.

208

9.2. Masking without Online Randomness

𝑞0 = 𝑎0 ∧ 𝑏0 ⊕ (𝑎0 ∨ ¬𝑏1)

= 𝑎0 ∧ 𝑏0 ⊕ ¬(¬𝑎0 ∧ 𝑏1)

= 𝑎0 ∧ 𝑏0 ⊕ (𝑎0 ∧ 𝑏1 ⊕ 𝑏1) ⊕ 1

𝑞1 = 𝑎1 ∧ 𝑏0 ⊕ (𝑎1 ∨ ¬𝑏1)
= 𝑎1 ∧ 𝑏0 ⊕ ¬(¬𝑎1 ∧ 𝑏1)

= 𝑎1 ∧ 𝑏0 ⊕ (𝑎1 ∧ 𝑏1 ⊕ 𝑏1) ⊕ 1

(9.5)

It can be verified that the terms 𝑎0 ∧ 𝑏0 ⊕ (𝑎0 ∧ 𝑏1 ⊕ 𝑏1) from 𝑞0 and 𝑎1 ∧ 𝑏0 ⊕
(𝑎1 ∧ 𝑏1 ⊕ 𝑏1) from 𝑞1, considered separately, are securely masked by 𝑏1 (= 𝑚1,
in the masking representation). Consider also the similarity with Eq. (9.3), but
with 𝑚2 replaced by 𝑏1 in a similar fashion as so-called correction terms are used
in threshold implementations [NRS11]. It is also interesting to note that these
expressions correspond to multiplexer formulas: 𝑎0 ∧ 𝑏0 ⊕ (¬𝑎0) ⊕ 𝑏1 = 𝑏0 if
𝑎0 = 0, else 𝑏1.

New construction. The design idea to ensure that the resulting sharing behaves
similarly to the masked XOR gate is to securely combine all multiplication terms
(Eq. (9.2)) in a single share of 𝑞, together with a single mask. However, adding
𝑞0 and 𝑞1 from Eq. (9.5) directly together is insecure because this results in 𝑎 ∧ 𝑏
without any mask. We therefore first add 𝑎1 (= 𝑚0) to the second term (𝑞1)
and then, both terms can be added without leaking information. The result
(our new 𝑞0) is only masked with a single mask 𝑚0. To achieve correctness the
second share (the new 𝑞1) is set to 𝑚0 (or equivalently 𝑎1). This then results in
the following masked AND gate:

𝑞0 = (𝑎0 ∧ 𝑏0 ⊕ (𝑎0 ∧ 𝑏1 ⊕ 𝑏1)) ⊕ ((𝑎1 ∧ 𝑏0 ⊕ (𝑎1 ∧ 𝑏1 ⊕ 𝑏1)) ⊕ 𝑎1)

= (𝑎 ∧ 𝑏) ⊕ 𝑚0

𝑞1 = 𝑎1 = 𝑚0

(9.6)

209

Chapter 9. Reusing Randomness

Further optimization. By closer observation of Eq. (9.6), we find that under
given circumstances (possible mask configurations associated with the input
shares), another optimization is possible. The truth table of the term (𝑎1 ∧ 𝑏1 ⊕
𝑏1)) ⊕ 𝑎1 of Eq. (9.6) is depicted in Table 9.3, which shows that it corresponds to
a simple logical OR of the two input shares.

Table 9.3: Truth table of the equation (𝑎1 ∧ 𝑏1 ⊕ 𝑏1)) ⊕ 𝑎1.

𝑎1 𝑏1 = 𝑎1 ∨ 𝑏1

0 0 0
0 1 1
1 0 1
1 1 1

However, what is even more remarkable, is that when going through all
possible valid mask configurations for the input shares (see Table 9.4), the term
becomes a common constant (𝑚0 ∨ 𝑚1) for all masked AND gates using the same
masks. Please note that we define the second share of any variable (e. g., 𝑎1, 𝑏1)
to carry only the mask information and never the secrets (𝑎 or 𝑏) in combination
with a mask.

We thus write 𝑚0 ∨ 𝑚1 as [𝑚0 ∨ 𝑚1] in the resulting equation to denote that
this is a term that only needs to be calculated once. The pratical implications
become more evident in the implementation sections. With this optimization,
Eq. (9.6) simplifies to Eq. (9.7) which saves one AND gate (for multiple occurences
of masked ANDs) and two XORs for each masked AND gate.

𝑞0 =

𝑡3︷ ︸︸ ︷
(𝑎0 ∧ 𝑏0︸ ︷︷ ︸

𝑡1

⊕(𝑎0 ∧ 𝑏1 ⊕ 𝑏1)︸ ︷︷ ︸
𝑡2

) ⊕

𝑡5︷ ︸︸ ︷
(𝑎1 ∧ 𝑏0︸ ︷︷ ︸

𝑡4

⊕[𝑚0 ∨ 𝑚1])

𝑞1 = 𝑎1

(9.7)

210

9.2. Masking without Online Randomness

Table 9.4: Possible mask configurations for the input shares 𝑎1 and 𝑏1.

𝑎1 𝑏1 𝑎1 ∨ 𝑏1

𝑚0 𝑚0 invalid
𝑚0 𝑚1 = 𝑚0 ∨ 𝑚1

𝑚0 (𝑚0 ⊕ 𝑚1) = 𝑚0 ∨ 𝑚1

𝑚1 𝑚0 = 𝑚0 ∨ 𝑚1

𝑚1 𝑚1 invalid
𝑚1 (𝑚0 ⊕ 𝑚1) = 𝑚0 ∨ 𝑚1

(𝑚0 ⊕ 𝑚1) 𝑚0 = 𝑚0 ∨ 𝑚1

(𝑚0 ⊕ 𝑚1) 𝑚1 = 𝑚0 ∨ 𝑚1

(𝑚0 ⊕ 𝑚1) (𝑚0 ⊕ 𝑚1) invalid

Security. The security of the masked AND gate can be easily verified by hand
as shown in Table 9.5 where 𝑡𝑖 values denote intermediate results. We again
record all possible input share combinations in a truth table and sort them by
the unshared secrets 𝑎 and 𝑏. For each possible intermediate (𝑡1 to 𝑡5, and 𝑞0),
we count the number of ones in the truth tables per secret value for 𝑎 and 𝑏

(Hamming weight). If the truth table Hamming weights of 𝑡𝑖 (resp. 𝑞0) are
identical for each secret, then the probability distribution of 𝑡𝑖 (resp. 𝑞0) is
independent of the secret. Table 9.5 clearly shows that this is the case; Hence, a
first-order attacker does not gain any sensitive information by probing either
one of the intermediates.

In addition to the manual inspection of the masked AND gate, we also
performed a formal verification by using the tools by Bloem et al. [BGI+18]
and Barthe et al. [BBC+19] which gave us the same results. Furthermore, we
did the same verification for the composition of the AND gate with an XOR
(𝑞 ⊕ 𝑏) and with another AND (𝑞 ∧ 𝑏) as can be seen in Tables 9.6 and 9.7.
The code that can be used as input for maskVerif [BBC+19] can be found

211

Chapter 9. Reusing Randomness

Table 9.5: Security of the masked AND from Eq. (9.7).

Shares Secrets TT
𝑎0 𝑎1 𝑏0 𝑏1 𝑎 𝑏 𝑎 ∧ 𝑏 𝑡1 𝑡2 𝑡3 𝑡4 𝑡5 𝑞0

0 0 0 0

0 0 0

0 0 0 0 0 0
0 0 1 1 0 1 1 0 1 0
1 1 0 0 0 0 0 0 1 1
1 1 1 1 1 0 1 1 0 1

Hamming weight 1 1 2 1 2 2
0 0 0 1

0 1 0

0 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 1
1 1 1 0 1 0 1 1 0 1

Hamming weight 1 1 2 1 2 2
0 1 0 0

1 0 0

0 0 0 0 1 1
0 1 1 1 0 1 1 1 0 1
1 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 1 0 1 0

Hamming weight 1 1 2 1 2 2
0 1 0 1

1 1 1

0 1 1 0 1 0
0 1 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0 0 1

Hamming weight 1 1 2 1 2 2

at https://github.com/LaurenDM/TwoRandomBits. We note that for secure
composition with the other input (𝑎), the roles of 𝑎 and 𝑏 should be switched in
Eq. (9.7).

Note that in Table 9.6 there is an imbalance when the output share 𝑞0 is
combined with input share 𝑎0, but not when first XORed with 𝑏0. This is normal,
as the AND gate treats inputs 𝑎 and 𝑏 asymmetrically. The AND gate in Eq. (9.7)
reuses the mask of 𝑎 (𝑚0) and can therefore not be freely composed with 𝑎.
By switching the roles of 𝑎 and 𝑏 in Eq. (9.7), one obtains the AND gate that

212

https://github.com/LaurenDM/TwoRandomBits

9.2. Masking without Online Randomness

Table 9.6: Security of the masked AND from Eq. (9.7) composed with XOR.

Shares Secrets TT
𝑎0 𝑎1 𝑏0 𝑏1 𝑎 𝑏 𝑎 ∧ 𝑏 𝑞0 ⊕ 𝑎0 𝑞0 ⊕ 𝑏0 (𝑞0 ⊕ 𝑏0) ⊕ 𝑎0

0 0 0 0

0 0 0

0 0 0
0 0 1 1 0 1 1
1 1 0 0 0 1 0
1 1 1 1 0 0 1

Hamming weight 0 2 2
0 0 0 1

0 1 0

0 0 0
0 0 1 0 0 1 1
1 1 0 1 0 1 0
1 1 1 0 0 0 1

Hamming weight 4 2 2
0 1 0 0

1 0 0

1 1 1
0 1 1 1 1 0 0
1 0 0 0 1 0 1
1 0 1 1 1 1 0

Hamming weight 0 2 2
0 1 0 1

1 1 1

0 0 0
0 1 1 0 0 1 1
1 0 0 1 0 1 0
1 0 1 0 0 0 1

Hamming weight 0 2 2

can be composed with 𝑎 but not with 𝑏. These composition rules may seem
complicated, but the tool of Section 9.3 automatically creates circuits that satisfy
them.

By combining the findings for the XOR and the AND gates we can mask
arbitrary implementations, and as we will show in the next section, we can
also derive simple rules to synthesize securely masked implementations from
unprotected ones.

213

Chapter 9. Reusing Randomness

Table 9.7: Security of the masked AND from Eq. (9.7) composed with AND as in
Eq. (9.8).

Shares Secrets TT
𝑎0 𝑎1 𝑏0 𝑏1 𝑞0 𝑞1 𝑎 𝑏 𝑞 𝑞∧𝑏 𝑡′1 𝑡′2 𝑡′3 𝑡′4 𝑡′5 𝑞′0
0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 0 1 0
1 1 0 0 1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 0 1 1 0 1

Hamming weight 1 1 2 1 2 2
0 0 0 1 0 0

0 1 0 0

0 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0 1 1
1 1 1 0 1 1 1 0 1 1 0 1

Hamming weight 1 1 2 1 2 2
0 1 0 0 1 1

1 0 0 0

0 0 0 0 1 1
0 1 1 1 1 1 1 0 1 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 1 0 1 0

Hamming weight 1 1 2 1 2 2
0 1 0 1 0 1

1 1 1 1

0 1 1 0 1 0
0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 1 1 0 0 0 0 0 1 1
1 0 1 0 1 0 1 0 1 0 0 1

Hamming weight 1 1 2 1 2 2

𝑞′0 =

𝑡′3︷ ︸︸ ︷
(𝑞0 ∧ 𝑏0︸ ︷︷ ︸

𝑡′1

⊕(𝑞0 ∧ 𝑏1 ⊕ 𝑏1)︸ ︷︷ ︸
𝑡′2

) ⊕

𝑡′5︷ ︸︸ ︷
(𝑞1 ∧ 𝑏0︸ ︷︷ ︸

𝑡′4

⊕[𝑚0 ∨ 𝑚1])

𝑞′1 = 𝑞1

(9.8)

214

9.3. Synthesis of First-Order Secure Implementations

9.3 Synthesis of First-Order Secure Implementations

Manually tracking the masks as they propagate through the implementations
quickly becomes a very complex task as the implementation size increases. We
thus decided to develop an automated approach to create a masked implemen-
tation when possible, or to indicate which signals need to be changed otherwise.
As a first step, the tool reads the description of a Boolean program in static single
assignment (SSA) form in Verilog syntax such that each instruction is either
a one-bit signal assignment or a two-bit XOR, XNOR, or AND gate. The Boolean
circuit is then represented as an SMT problem which is fed to the Z3 [MB08]
theorem prover. Z3 searches for a possible solution for the mask encoding of the
input signals so that for each gate the inputs have different masks. Furthermore,
it allows ensuring a desired mask encoding for the input and output signals.
We now give a more detailed description of how the implementation is encoded
in SMT2 and which steps are necessary.

Each implementation takes two masks 𝑚0 and 𝑚1. As a result, there are
three possible mask combinations and thus three possible encodings for the
input signals: 1 = 𝑚0, 2 = 𝑚1, 3 = 𝑚0 ⊕ 𝑚1. With the following SMT2 code
snippet, the input signal 𝑎 is mapped to any of the three masking combinations.
We adjust the assertions accordingly, depending on whether we target a specific
encoding or we let the theorem prover decide on the encoding.

; Input encod ing d e f i n i t i o n and c o n s t r a i n t s

(dec lare−const a In t)
(a s s e r t (> a 0))
(a s s e r t (< a 4))

The same rules are also applied to every output of a gate to restrict the output
mask encoding to these three possibilities.

For each of the four possible instruction classes (assignment, XOR, XNOR, and
AND) of the SSA-encoded input file, we create specific rules for deciding which
masks can appear in the output 𝑞 for the given input combination. In the

215

Chapter 9. Reusing Randomness

example encoding it is always assumed that the signals 𝑎 and optionally 𝑏 form
the operands. The encoding of the signal assignment 𝑞 = 𝑎 just results in a copy
of the mask encoding in the SMT2 rules.

; S i g n a l a s s i gnment r u l e

(a s s e r t (= q a))

To encode the output of the XOR (and XNOR) instructions, we utilize the fact
that for different input encodings of 𝑎 and 𝑏, the output encoding (calculated
by an XOR) is always different from the input encodings and equal to the third
unused one.

𝑚0 ⊕ 𝑚1 = (𝑚0 ⊕ 𝑚1)

𝑚0 ⊕ (𝑚0 ⊕ 𝑚1) = 𝑚1

𝑚1 ⊕ (𝑚0 ⊕ 𝑚1) = 𝑚0

. . .

When neglecting the case that both inputs could have the same mask
encoding, which is covered by the safety rules for the gates in the next step, the
following SMT2 encoding can be used.

; XOR/XNOR g a t e r u l e

(a s s e r t (not (or (= q a) (= q b))))

Note that the negation of the output in case of the XNOR has no influence on
the encoding because it is a simple addition of a constant value 1.

Finally, for the AND gate, the mask encoding can be the same as either operand
since the operands can be simply swapped. We thus let the theorem prover
decide which signal is used as the first operand and this defines the mask
encoding of the output (see Eq. (9.7)). The information of which masks appear
in the output is later on taken into account when the masked implementation is
created to decide on the first operand.

216

9.3. Synthesis of First-Order Secure Implementations

; AND g a t e r u l e

(a s s e r t (or (= q a) (= q b)))

Again the AND gate rule does not cover the cases of both operands having the
same mask encoding.

For each two-input gate, we additionally define that both operands are
required to have a different mask encoding which otherwise would create a flaw
in the masked implementation.

; S a f e t y r u l e f o r two inpu t g a t e s

(a s s e r t (not (= a b)))

To make the design and verification of separate modules easier, we decide to
use the same input and output mask encoding on byte-level for all our modules.
We can restrict the output encoding by setting the input and output signals
equal, for example.

; Equal inpu t and output by t e− enc od ing

(a s s e r t (= o0 i 0))
(a s s e r t (= o1 i 1))
(a s s e r t (= o2 i 2))
. . .
(a s s e r t (= o7 i 7))

When the Z3 theorem solver finds a secure model that fulfills our constraints,
it constructs the mask assignments for a masked implementation. The translation
of the unprotected scheme to a secure masked implementation is then rather
straightforward. At first, we duplicate all input and output ports of the module
and additionally add the two masks 𝑚0 and 𝑚1 as input signals. For each
instruction of the SSA input file we replace the original code by its masked
variant according to the masked gates introduced in Section 9.2. As a further
optimization, the second share of each instruction is (optionally) replaced by the
resulting mask of the output signal which helps to save unnecessary instructions
that would result in one of the three mask encodings anyway.

217

Chapter 9. Reusing Randomness

We do not give a more detailed description of our tool at this point since the
rest of the functionality follows from the description of the masked gates above
and is mostly engineering work.

9.4 Masking AES

To demonstrate the practicality of our approach, we target AES-128 (forward
direction only) as an example. Since none of the existing formal verification
tools are yet powerful enough to verify a full AES encryption, we decide to use
a modular implementation and verification approach. To justify the security of
the overall design when bringing the modules together, we restrict the mask
encoding for each input and output byte of every function to be equal.

Our software implementation is partially based on earlier work described
in Chapter 6 and in [SS16c]. There we describe various optimized assembly
implementations targeting the 32-bit ARM Cortex-M3 and Cortex-M4 micro-
processors. One implementation is masked using 2 Boolean shares. This is a
bitsliced implementation of AES-128 in CTR mode, such that two consecutive
AES blocks can be efficiently processed in parallel. When 256 blocks (or 4
kilobyte) of data are encrypted, we measured that encryption on average takes
8727 cycles per block (or 545 cycles per byte). We also noted that 3440 cycles of
these are spent on generating all required 10 496 random bits using the onboard
hardware RNG of an STM32F407 board, which is over 39% of the total cycle
count.

Our implementation uses the same hardware RNG of the same board, but
we only generate a single 32-bit fresh random word per 2 AES blocks. The
architecture dictates a multiple of 32 bits, so 28 of these are ignored, 2 are used
for the first AES block, and 2 for the second AES block.

218

9.4. Masking AES

9.4.1 SubBytes

The most complicated part of the AES is its SubBytes layer which can be
implemented as 16 instances of S-box modules. Most of the masked AES
designs published over the last years are based on the S-box construction of
Canright [Can05]. A more suitable design for our bit-wise approach, however,
is the design of Boyar and Peralta [BP12] which is already constructed in SSA
form. There are follow-up works [BMP13; VSP18] that further reduce the size of
the implementation in terms of gates/instructions. Various unmasked S-box
implementations can be found online.1 For hardware implementations, we
would recommend the S-box implementation which aims at minimizing the
logic depth (16). This S-box consists of 128 SSA instructions. In total there
are 34 AND, 90 XOR and 4 XNOR instructions for the unmasked implementation.
Each instruction takes two one-bit variables as input. For our case (a software
implementation), the logic depth is not of such importance, so we choose the
S-box with the smallest gate count (113). This S-box has 32 AND, 77 XOR and 4
XNOR instructions and has logic depth 27.

After running our synthesis tool on this S-box design without any further
optimizations, the resulting masked design consists of 96 AND gates, 228 XOR
gates, and 4 NOT gates (because XNORs are decomposed to one XOR followed by
a NOT gate in Yosys’ ILANG). The 96 AND gates result from the fact that the
masked AND triples the number of AND gates compared to the unmasked design.
Also, each masked AND gate introduces 4 XOR gates which in total results in 128
additional XOR gates. The masking of the XOR and XNOR gates, on the other hand,
does not introduce additional circuitry since the second output share can simply
be assigned to the third mask (i. e., unused by the inputs). Some additional XOR
gates are required because at some points we need to change the masking of
a signal by introducing additional XOR instructions to receive a satisfiable Z3

1 http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html

219

http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html

Chapter 9. Reusing Randomness

model and thus a securely synthesizable implementation, and to ensure that the
input and output mask encoding is equal.

After running an optimization pass in Yosys, which maps gates implementing
the same function to a single gate and thus eliminates duplications, the number
of gates could be reduced to 86 AND gates, 1 OR gate, 225 XOR gates and 4 NOT
gates. We rerun the verification after this optimization to ensure that the
implementation remains secure. The NOT gates can be moved to the key schedule
such that they are not executed for every encryption/decryption call with the
same key. The total overhead for the masking of the S-box is thus about a factor
2.79 excluding loads and stores.

From the design of the S-box, we also gathered a byte encoding to be used
for the rest of the AES modules to ensure security and correctness of the full
encryption. The byte encoding is {2, 3, 3, 1, 1, 2, 1, 2} in the SMT encoding, cor-
responding to {𝑚1 , 𝑚0 ⊕ 𝑚1 , 𝑚0 ⊕ 𝑚1 , 𝑚0 , 𝑚0 , 𝑚1 , 𝑚0 , 𝑚1} as the mask encoding
for the S-box input bits 𝑖0 to 𝑖7.

The targeted microarchitecture has only 14 registers that can be freely used,
which means that many store and load instructions need to be inserted. On
this platform, loads from memory are relatively expensive. Most arithmetic
instructions execute in a single cycle, while a load instruction will take at least two
cycles, although when 𝑁 loads can be pipelined they can often execute in 𝑁 + 1
cycles. In earlier work [Sto16a], a tool was created that automatically reschedules
instructions and allocates registers in order to minimize the overhead caused
by spilling values to the stack. We use the same tool to schedule the 60 load
instructions and 51 store instructions on top of the arithmetic instructions.

9.4.2 Linear Components

ShiftRows. Since the ShiftRows transformation only changes the order of the
bytes in the state rows, no special modifications are required for the round
transformation compared to an unprotected design. Furthermore, all of the

220

9.4. Masking AES

masked AES modules (in the final design) do not explicitly carry the second
share of each signal but instead just assume the byte mask encoding as used
by the S-box for inputs and outputs as the second share. ShiftRows can be
implemented with only wiring in hardware, but in software we need instructions
to actually move the bits around. We use the same ShiftRows implementation
as that of Chapter 6, which requires 104 single-cycle instructions.

MixColumns. We start with the unmasked MixColumns implementation from
Chapter 6, that uses 27 32-bit XORs for the four-column operation. However,
to translate this to a masked implementation we now need to be careful that
no values with the same mask get combined and ensure the correct byte mask
encoding of the inputs and outputs. We therefore need to remask various values
and the masks need to be loaded from the stack. In total we need to add 12 XOR
and 6 load instructions to the original 27 XORs. A program was used to verify
that this was done correctly.

AddRoundKey. In AddRoundKey the round key is added to the state (or the
plaintext in the first round). Since we enforce the same byte encoding for all
bytes in our design, the key byte first needs to be remasked before it can be added
to the state or plaintext byte and the result of the XOR also requires remasking.
Instead of 8 32-bit XORs as in the unprotected bitsliced design, we thus require
32 XOR instructions. The number of XORs can be reduced to only sixteen if the
state and key bytes are shared such that their sum again results in the assumed
byte sharing for the S-box. Due to the lack of the possibility to formally verify
the whole implementation, we decide on keeping the byte encoding for both
key and state bytes the same. This makes arguing of the security of the overall
implementation for individually verified modules easier because there are fewer
issues to oversee. In addition to the arithmetic instructions, we use 11 load
instructions and 1 store.

221

Chapter 9. Reusing Randomness

9.4.3 Results

For the entire AES encryption, we measure on average 3387.6 cycles per block
(or 211.7 cycles per byte) under the exact same test conditions as in Chapter 6.
This is a speed improvement of roughly 61%. Moreover, the stack requirements
are lowered from 1584 bytes to only 188 bytes, a decrease of over 88%.

In Chapter 6 we also described an unmasked bitsliced AES-128-CTR imple-
mentation as an intermediate step. This took only 1616.6 cycles per block (or
101 cycles per byte) on the Cortex-M4. The overhead cost of adding first-order
masking is therefore still almost a factor 2.1.

The most computation effort in each round is spent on the S-box calculations
with 68.7% of the instructions. The AddRoundKey and MixColumns operations
consume respectively 7.1% and 7.3% of the round instructions. The remaining
instructions are mostly spent on the ShiftRows transformation with about 16.9%.

Table 9.8 summarizes the costs for the individual transformations that are
required to implement the full AES.

9.5 Discussion

9.5.1 Comparison to Previous Work

A comprehensive comparison of our results with previous work is very difficult.
On the one hand, masked AES implementations have been created for many
different platforms. On the other hand, a number of works only report the speed
which means that comparing based on other aspects such as memory usage is
hard, especially when source code is not easily available. Moreover, the reported
speeds were measured on different CPU (micro)architectures, which makes
them harder to compare. For masked implementations, rather than comparing
absolute execution times, it makes more sense to compare the overhead factor
over an unprotected implementation, as was done in [WVGX15]. However, we
were not able to find implementation results for unmasked implementations

222

9.5. Discussion

Table 9.8: AES-128-CTR implementation results in terms of instruction counts.

Module # AND XOR Bit op* Load Store

AES† 870 3 433 560 773 520

PreRound 1 - 32 - 8 1
▶ AddRoundKey‡ 1 - 32 - 8 1

Round 9 87 344 56 77 52
▶ SubBytes 1 87 225 - 60 51
▶ ShiftRows 1 - 48 56 - -
▶MixColumns 1 - 39 - 6 -
▶ AddRoundKey‡ 1 - 32 - 11 1

LastRound 1 87 305 56 72 51
▶ SubBytes 1 87 225 - 60 51
▶ ShiftRows 1 - 48 56 - -
▶ AddRoundKey‡ 1 - 32 - 12 -
* This includes ubfx and uxtb instructions.
† This excludes the function prologue and epilogue, reading a random word and changing it to

the right format, bitslicing the input, unbitslicing the output, loading the input, storing the
output, increasing the CTR-mode counter, the initial masking of the input, the final unmasking
of the output, XORing the keystream with the plaintext, keeping track of the remaining length,
and managing some pointers and addresses. Of course all of this is included in the speed
measurement.

‡ Loads and stores slightly differ due to values that are already in registers or no longer necessary.

223

Chapter 9. Reusing Randomness

in all works. Furthermore, none of the previous works consider the cost of the
initial masking of plaintext and key. Finally, it should also be noted that a lot of
these works also present higher-order masking schemes, which again makes
comparison with our optimized first-order AES unreasonable. Nevertheless, we
gathered some data in Table 9.9 for completeness.

Performance. The only previous work to which a comparison is justified is
the work underlying Chapter 6 [SS16c], since we used the same platform.
When comparing to that work, we can conclude that our dramatic decrease of
randomness does not imply sacrifices when it comes to speed or memory.

When it comes to speed, we also look at the work of Wang et al. [WVGX15],
since it was able to create a significant improvement over previous works. By
comparing the overhead factors over an unprotected implementation, we can
conclude that the speed of our implementation is competitive.

It should be noted that like the implementations by Goudarzi et al. [GR17],
we do not include a masked key schedule but instead store the precomputed
round keys in memory in shared form.

Finally, we point out that we compare the average encryption speed per AES
block, but as our implementation always processes two blocks in parallel using
CTR mode, one cannot reach this speed when encrypting only a single AES
block. Moreover, the implementation is fully unrolled, which results in very
high speed and a large ROM requirement. If the ROM size is deemed too high
for a particular application, it would be trivial to drastically reduce it at the cost
of only a few extra CPU cycles.

Randomness. When it comes to total randomness consumption, our implemen-
tation clearly outshines most of the previous works. Only Faust et al. [FPS17]
had previously reported a first-order AES with constant randomness. In fact,
they were the first to show its feasibility. However, their complete AES imple-
mentation is not discussed in detail. For example, it is not clear if the 8 S-box

224

9.5. Discussion

input bits also use the same masks and if this is the case, which encoding was
used. Although they use the same development board (including the hardware
RNG), it should be noted that their implementation was written in C and more
meant as a proof of concept than as a carefully optimized implementation.

Security. Apart from differences in speed, memory usage and randomness
consumption, the implementations in Table 9.9 naturally also differ in level
of practical security. A low fresh randomness consumption goes hand-in-
hand with higher signal-to-noise ratio, which can benefit the adversary. It has
also been noted that the reuse of randomness leads to dangerous transition
leakage [WM18b]. On the other hand, transition leakages have also been
shown to be a problem in the more conventional randomness-expensive masked
implementations [PV17], which means our implementation is not necessarily the
only one vulnerable to this. Moreover, even if we double our latency to account
for reset cycles against transition leakage, our performance is very competitive
with previous works.

9.5.2 Randomness in Perspective

Offline. Our design requires no online randomness and only two random
bits for the initial sharing. For other implementations in the literature at
least 128 bits for the sharing of the key and 128 bits for the sharing of the
plaintext are required for a two-share implementation, or 2 × 256 bits for a
three-share threshold implementation, respectively. From this perspective, our
implementation saves at least 254 random bits for the initial sharing alone.

Online. In the current state-of-the-art on first-order masking, each multiplica-
tion and refreshing block requires one unit of fresh randomness. In the case of
the AES S-box, each unit is one byte and the S-box can be constructed using four
multiplications and two refreshings [RP10], which brings the total randomness

225

Chapter 9. Reusing Randomness

Table 9.9: Comparing performance results for AES-128.

Platform Speed
(cycles)

Overhead
factor

ROM
(bytes)

RAM
(bytes)

Random
(bits)

Comparable Platform

This
work

Cortex-M4 3 387.6 2.1 25.2k 188 2

Chapter 6 Cortex-M4 8 727.6 5.4 39.9k 2.0k 10.5k
[FPS17] Cortex-M4 73 650 - - - 2/16

Different Platforms

[RP10] 8-bit 8051 129 000 64.5 3.2k 73 9.6k
[BFG+17] 8-bit AVR 157 196 - 2.8k (in total) 13.1k
[BFG+17] 8-bit AVR 73 769 - 1.8k (in total) 11.5k
[GR17] ARM7TDMI 53 462 - 7.5k - 30.8k
[GR17] ARM7TDMI 49 329 - 4.8k - 26.9k
[GR17] ARM7TDMI 56 199 - 12.4k - 19.2k
[WVGX15] Cortex-A15

simulator
4 869 4.3 - - 19.2k

cost per S-box evaluation to 48 bits. One SubBytes transformation consists of 16
S-boxes and thus requires 768 random bits. One encryption round including
key schedule requires 960 bits. In total, the amount of online randomness for
one AES-128 encryption is thus 9.6 kbits.

For the sake of completeness, we note that in hardware masking, there
exist more online randomness efficient S-box implementations which, however,
require an increased amount of input shares for the S-box (e. g., the four-share
S-boxes of Ghoshal et al. [GD17] and Wegener et al. [WM18a]). There is no full
AES implementation or estimation given in [GD17], so further comparison is

226

9.5. Discussion

difficult. Moreover, a flaw in their design was detected and reported by Wegener
and Moradi [WM18a]. The S-box of [WM18a] also has four input and output
shares and exploits the changing of the guards trick by Daemen [Dae17] to
obtain zero online randomness consumption. Their full design uses the dynamic
conversion approach, but avoids extra online randomness by a clever recycling
of independent state bytes. They thus only require 256 bits for the initial sharing
of the plaintext and key and 24 additional bits for the initial guards. More
recently, Sugawara [Sug18] presented the first three-share AES S-box without
online randomness. However, their entire AES implementation still uses 776
initial bits of randomness, which exceeds that of [WM18a].

Summary. Comparing our design with others is quite difficult because most
of the existing implementations do not consider the amount of required initial
randomness for sharing the key and plaintext data. However, we have at
least shown that also the performance can be competitive with state-of-the-
art implementations, even if we double the latency with reset cycles against
transitional leakages. Requiring only two bits of randomness for each masked
encryption could thus make the difference between deciding on requiring an
additional PRNG or using an already on-board TRNG, and could thus make
first-order masking cheap enough to be used for highly constrained devices like
low-cost RFID tags.

9.5.3 Hardware

For a SCA-resistant implementation in hardware, security in the probing model
with glitches needs to be ensured. The security of our approach critically
depends on the correct order in which the signals are combined. For this reason,
registers are required after 𝑡1 , 𝑡2 , 𝑡3 , 𝑡4 and 𝑡5.

227

Chapter 9. Reusing Randomness

The above has been formally verified in the presence of glitches using
maskVerif [BBC+19].2 Hence, our methodology is also applicable to hardware
masking.

Efficiency. In practice however, the method is more amenable for application
in software. The need for many registers means we pay for the randomness
reduction by an increased amount of latency. The unmasked Boyar-Peralta S-box
has a maximum logic depth of 16 and an AND depth of 4. Every masked AND
gate requires three cycles to securely calculate the result. Accordingly, the total
latency of the S-box is 12 cycles (16−4 XOR layers) plus 12 (4 AND layers ×3) which
in total amounts to 24 cycles. In software, the impact of our masking method
on the latency and throughput is less dramatic, both because of the absence of
glitches and because of the possibility of bitslicing.

Security. Moreover, most hardware masked AES implementations are round-
based with a serial S-box calculation. As was shown by Wegener and Moradi [WM18b],
these serialized designs can introduce dangerous transition leakages. So, in
contrast with an unrolled implementation, these designs require register reset
cycles or precharge logic, which would essentially again increase the latency to
its double. For these reasons, we do not investigate a hardware implementation
in further detail. We further discuss the security issues in Section 9.6.3.

To conclude, we have demonstrated that two random bits are enough to
achieve theoretical first-order security in the probing model even in the presence
of glitches. Its implementation in practice however incurs a high penalty in
latency and requires extra care to not introduce new leakages.

2 The results can also be found at https://github.com/LaurenDM/TwoRandomBits.

228

https://github.com/LaurenDM/TwoRandomBits

9.6. Security Analysis

9.6 Security Analysis

9.6.1 Formal Verification in the 𝑡-Probing Model

For the verification of the side-channel security of our approach, we used the
formal verification tool maskVerif of Barthe et al. [BBC+19] on the synthesized
modules. Since maskVerif is originally designed to verify sharing-based imple-
mentations, the outcome of our synthesis tool creates a verification wrapper
that is later on modified to represent the correct masking for the input signals
of the actual masked implementation. The verification wrapper thus takes two
shares per input of the masked module and creates the correct masking by first
adding the mask as defined by the mask encoding and subsequently the second
share of the input.

The input bits {𝑖0 , 𝑖1 , . . . 𝑖7} of the masked AES S-box module for example,
uses the same SMT mask encoding {2, 3, 3, 1, 1, 2, 1, 2} (where 1 denotes 𝑚0, 2
denotes 𝑚1, and 3 denotes 𝑚0 ⊕ 𝑚1) as any other module for both inputs and
outputs. We take the input shares of the wrapper (indicated by the suffix “_0”
for the first share or “_1” for the second share) and create the actual masking as
follows.

module ver i f i ca t ion_wrapper (
input i0_0 , i1_0 , . . . , i7_0 ,
input i0_1 , i1_1 , . . . , i7_1 ,
input m0, m1,
output o0 , o1 , . . . , o7) ;

/ / Mask encod ing

assign i 0 = (i0_0 ^ m1) ^ i0_1 ; / / 2

assign i 1 = (i1_0 ^ m0 ^ m1) ^ i1_1 ; / / 3

assign i 2 = (i2_0 ^ m0 ^ m1) ^ i2_1 ; / / 3

assign i 3 = (i3_0 ^ m0) ^ i3_1 ; / / 1

assign i 4 = (i4_0 ^ m0) ^ i4_1 ; / / 1

assign i 5 = (i5_0 ^ m1) ^ i5_1 ; / / 2

assign i 6 = (i6_0 ^ m0) ^ i6_1 ; / / 1

229

Chapter 9. Reusing Randomness

assign i 7 = (i7_0 ^ m1) ^ i7_1 ; / / 2

/ / DUV

aes_sbox sbox_ ins t (i0 , i1 , i2 , . . . , i7 , . . .) ;
endmodule

For the input in the maskVerif tool, the implementation is read by the
Yosys [Wol] open synthesis tool. The circuit is then mapped to Yosys’ internal
gate representation (ILANG) and subsequently flattened such that a single
module is created that contains all gates. The resulting circuit is then returned in
ILANG format for which input, output and mask signals are annotated before it
is fed into maskVerif. The implementations are validated for the probing model
of Ishai et al. [ISW03] without glitches.

Table 9.10: SCA resistance verification results.

Module Number of 1-uples Verification time Result

AddByte 95 16 ms probing secure
MixColumns 315 108 ms probing secure
SubByte 429 22 s probing secure

As the results in Table 9.10 show, all of the modules on which our entire
AES-128 encryption depends, are probing secure as intended. ShiftRows is only
rewiring (readdressing) in hardware and just a bit permutation in software,
which does not influence the probing security. With the input and output
constraints for our synthesis tool, we also ensure that the mask encoding for
each byte is the same, and we can thus safely compose these modules without
creating flaws in the probing model for first-orders. However, we note that this
composition argument is only true for first-order implementations for which a
probing attacker is restricted to a single probe. This means that multivariate
probes are of no concern and thus probes occur only in a single submodule.
Tables 9.6 and 9.7 show that the reuse of randomness has no influence on the

230

9.6. Security Analysis

output distributions of cascaded gates, as long as the mask encoding is done with
precision. Our synthesis tool creates implementations which, by construction,
ensure that the mask encoding is fixed at the inputs and outputs of submodules.
Our submodules have been formally verified for these encodings. Therefore,
combined with the fact that probes can only placed on a single submodule, this
ensures that the entire AES implementation is first-order secure.

We have proven the security of our scheme using formal verification tools
and demonstrated that randomness can almost completely be eliminated for first-
order security within the 𝑡-probing model. Apart from pushing the boundaries
in terms of randomness cost, we are therefore also testing the limits of this
model, which has become the standard adversary model for countermeasures
against DPA. In the next two subsections, we demonstrate with our new masking
scheme where the 𝑡-probing model is lacking.

9.6.2 Horizontal Attacks

With our scheme that fixes the mask encoding of the state across the rounds of
an encryption, we need to be careful not to create a vulnerability to horizontal
attacks. A horizontal side-channel attack considers correlations between multiple
samples within a single trace, as opposed to the more common vertical side-
channel attacks, which consider the same time sample across multiple traces.
For this investigation, we cannot rely on established evaluation methods (e. g.,
TVLA) or verification tools since the state-of-the-art on horizontal attacks against
symmetric primitives is quite limited. We will first consider the attacks from
previous works and explain why they cannot be applied to our new scheme.
Next, we use simulated traces to investigate the success probability of a trivial
horizontal attack to recover the masks, followed by a classical CPA attack.

Previous works. The literature on horizontal attacks against public-key prim-
itives is abundant [BJPW13; BJPW14; HKT15]. However, these attacks are

231

Chapter 9. Reusing Randomness

typically based on the assumption that the secret determines the presence or
absence of some collision(s) (e. g., between subsequent iterations in an expo-
nentiation algorithm). Since this situation clearly differs from ours, we will not
further discuss it.

A recent work investigates horizontal attacks against a very common build-
ing block in masked implementations, i. e., the ISW multiplication [BCPZ16].
However, we will not consider such an attack in this work, since it targets the
ISW implementations when the number of shares 𝑛 satisfies 𝑛 > 𝑐 · 𝜎, with 𝜎

the measurements noise. As an example, they attack a 21-share implementation.
It is thus unlikely to be applicable to our 2-share implementation.

One type of horizontal attack against masked symmetric primitives tar-
gets implementations that compute the S-box by means of a masked table
lookup [PdL09]. They exploit the fact that for each S-box input (i. e., one plain-
text byte and one key byte), the table lookup is performed with multiple masks.
Hence, a trace of a single encryption consists of multiple subtraces of S-box
calculations that use the same key byte. By doing a CPA attack horizontally on
these subtraces, the key byte can be recovered. In our scheme, each key byte
is only used once per encryption. This makes a similar horizontal attack on a
single trace impossible.

Experiments. Nevertheless, our implementation does use the same mask for
every single state byte and in every single round of AES. A normal CPA attack
relies on the ability of the attacker to make hypotheses on intermediates. In the
case of AES, these hypotheses typically target the output of an S-box 𝑆(𝑥𝑖 ⊕ 𝑘),
where 𝑥𝑖 is variable and known (in the first/last round) and 𝑘 is constant and
unknown and hence, the target of the attack. In our case, the S-box output is
protected with a mask. The intermediate in the traces would be 𝑆(𝑥𝑖 ⊕ 𝑘) ⊕ 𝑚𝑖

when considered vertically, with 𝑖 the index of the trace/encryption. In this
case, 𝑥𝑖 is variable and known (the plaintext), 𝑘 is constant and unknown and
𝑚𝑖 is variable and unknown, since each encryption uses a new mask. The key

232

9.6. Security Analysis

cannot be extracted unless the mask for each encryption 𝑚𝑖 is known. When
we consider a trace horizontally, the S-box outputs are 𝑆(𝑥 𝑗 ⊕ 𝑘 𝑗) ⊕ 𝑚 with 𝑥 𝑗
variable and unknown (state bytes) in all rounds except the first and last, 𝑘 𝑗
variable and unknown (different round keys) and 𝑚 constant and unknown. It
is clear that the key cannot be extracted using a horizontal CPA attack. However,
if the constant and unknown mask 𝑚 can be extracted horizontally from each
single trace, a classic vertical CPA attack using hypotheses 𝑆(𝑥𝑖 ⊕ 𝑘) ⊕ 𝑚𝑖 can
extract the key bytes.

To attack the mask within a single trace, we need to choose an intermediate
that combines the mask with variable and known data 𝑥 𝑗 , i. e., the plaintext or
ciphertext bytes. This should thus give 16 or 32 subtraces to do CPA over with
the hypotheses 𝑥 𝑗 ⊕ 𝑚.

We create simulated traces to test this attack, consisting of the Hamming
weight of each state byte after each intermediate operation. While our actual
implementation is bitsliced, our simulated traces consider bytes for simplicity. As
shown in [BGRV15], the signal-to-noise ratio (SNR) of a bitsliced implementation
is lower, but it does not prevent SCA.

For each individual trace, we consider 16 subtraces corresponding to the 16
byte-XORs in the last AddRoundKey stage. Across these subtraces, we perform
CPA to recover the mask of that trace. At least in simulation, this attack is very
successful. Table 9.11 shows that even for high noise levels, only 8% of the
masks are guessed incorrectly. However, note that attacking a linear operation
in practice is very difficult.

Table 9.11: Percentage wrongly guessed masks after horizontal CPA on 16
subtraces.

SNR 100 10 1 0.1 0.01

% wrong masks 0 0 1.885 7.411 7.501

233

Chapter 9. Reusing Randomness

Once the masks have been guessed, we perform a normal vertical CPA, using
the (mostly correct) knowledge of the masks. We repeat the experiment for
various signal-to-noise ratios (SNRs) and measure the success by the average
rank of the correct key byte. Figure 9.1 shows that for very high SNR, the attack
succeeds with only a few thousand traces. For a more realistic SNR = 1.0, the
average key rank never becomes 0 with up to 10 000 traces. For low SNR levels,
the attack never succeeds.

Figure 9.1: Average correct key rank as a function of the number of traces in a
CPA attack followed by a horizontal mask recovery for different SNRs.

We performed a small investigation of the success of horizontal attacks against
our implementation with extreme mask reuse. We used a fairly simplistic attack
because we cannot rely on state-of-the-art analysis tools. We assumed a quite
powerful adversary who can attack linear operations and showed that the reuse
of masks does not trivially introduce vulnerabilities against horizontal attacks
at realistic noise levels.

234

9.6. Security Analysis

9.6.3 Beyond the 𝑡-Probing Model

It was already noted by Wegener and Moradi [WM18b] that the 𝑡-probing
model does not incorporate transition leakages, which in our case of extreme
randomness reuse, are dangerous. On the one hand, having the same masks
for each bit of the state leads to transition leakages if the S-box is implemented
in a serial way. Furthermore, the reuse of the same masks in each round, has
the same effect in a round-based implementation. This example alone already
shows the huge gap between theory and practice. However, we have shown
that our solution can at least obtain very competitive performance compared to
previous work, even if we double the latency with reset cycles against transition
leakage.

While our scheme is an extreme example of how theoretical security may be
insufficient in practice, similar conclusions can be made for previous works that
target security in the 𝑡-probing model, even those in which randomness is used
as described in [ISW03] and never reused. Effects such as transition leakages
have been especially well studied for software by Balash et al. [BGG+14] and more
recently by Papagiannopoulos et al. [PV17] among others. The resetting and
clearing of registers is a popular solution proposed both in [WM18b] and [PV17],
but incurs a very high penalty on the latency. The authors of [BGG+14] propose
to use a theoretically 2𝑡-secure scheme when targeting 𝑡-order security.

To conclude, we have shown that eliminating randomness (apart from 2
bits) is possible. We however also noted that the models currently used are not
prohibitive enough to guarantee security in practice and that theoretically secure
solutions should be superposed with additional expensive countermeasures
to achieve the desired protection. An interesting question for future work is
whether the models can be adapted such that schemes are practically secure
from the start.

235

Chapter 9. Reusing Randomness

9.7 Conclusions and Future Work

In this chapter, we have demonstrated that first-order masking in theory does
not require more than two bits of randomness in both software and hardware.
These two bits of randomness include the initial randomness for masking of
secret data as well as the so-called online randomness that is usually required
by other masking approaches to keep the first-order probing security. We thus
throw away the distinction of randomness spent on masking the input data and
the randomness spent on keeping this independence during the computation,
since it is not very meaningful for applications in practice.

We have also shown that our approach not only leads to first-order probing
secure implementations (which we verified using formal tools as well as manual
verification) but also that this approach can be automated easily.

The downside of our approach, which is more noticeable in hardware, is an
increased latency behavior due to the required control of the order in which
operations are performed. However, we want to emphasize that the main idea
of this work was to demonstrate that two bits of randomness not only pose the
intuitive theoretical lower bound for first-order masking but that this bound is
achievable in theory.

Our findings not only give answers to intriguing research questions but also
lead the way to some follow-up questions.

▶ We demonstrated that when sacrificing latency in hardware, a lot of random
bits can be saved and therefore the costs involved with the production
of randomness. At the same time, there exists work like the low-latency
masking approach of Gross et al. [GIB18], that show that arbitrary functions
can be calculated in a securely masked way and in a single cycle when
randomness considerations are not taken into account. A consequent next
step is thus to research concepts to design masked implementations which
achieve a better trade-off regarding latency and area for a give randomness
budget.

236

9.7. Conclusions and Future Work

▶ Another open question is if and how the introduced concepts can be
extended to higher-order masking. For first-order masking, an attacker
is limited to a single observation and thus masks can be reused in the
same form and combination at different points in the implementation.
For higher-order masking, the same combination of masks at different
positions automatically lead to a violation of the probing security. This
does not mean that mask reuse is not possible but only that more aspects
need to be taken into account like the encoding of the masks at multiple
positions.

▶ While two random bits are enough to achieve first-order probing security,
it does not mean that it suffices to protect against first-order DPA in
practice. Using less randomness may provide a larger attack surface to
horizontal attacks and most likely also increases the signal-to-noise ratio
for a DPA attacker. Also, transition leakages become more prominent
when randomness recycling is used in extremis. The gap between theory
and practice has never been more clear and also unoptimized schemes
that have been designed in the 𝑡-probing model are vulnerable in practice.
Naturally, our scheme’s almost complete elimination of randomness means
that its actual security level (e. g., in terms of required leakage traces to
extract a secret) is not the same as for an implementation that uses a lot of
randomness on mask refreshing of intermediate values. However, what is
less obvious is the question whether or not the saved randomness could
be more effectively used, e. g., for additional hiding countermeasures that
lower the signal-to-noise ration by a higher extent than by spending more
randomness on masking itself. There are two different approaches to take
in the future. On the one hand, we can keep designing masking schemes
in the theoretical 𝑡-probing model, pushing the limits and reaching new
boundaries. However, further research is needed into the implementation
cost of existing schemes when combined with the extra countermeasures

237

Chapter 9. Reusing Randomness

necessary to take them beyond the 𝑡-probing model into practice. An
alternative route is to adapt our models and design schemes which in
themselves provide the needed practical security. The next challenge is
then to push the limits in those models.

238

Chapter 10
Conclusions and Outlook

Throughout the previous chapters we proposed and discussed ideas for the
optimization of various aspects of symmetric cryptography. The technique
based on SAT solvers introduced in Chapter 3 works well for small S-boxes for
which implementations with few operations exist. Unfortunately, the technique
scales poorly to larger S-boxes. It would be interesting to see if this method can
be combined with advances in the fields of logic synthesis and particularly exact
synthesis, which may be less known in the symmetric-cryptography community.

Chapter 4 discussed global optimization of implementations of MDS matrices.
We showed how a metric used previously in literature yields less-than-optimal
results and how existing techniques for solving shortest linear straight-line
programs apply to the optimization of MDS matrices. It makes one wonder
how much of research is really obsoleted by existing results that are simply
poorly available, phrased differently, forgotten through history, written in a
different language, or known only in other research communities. Research on
improving the heuristic algorithms may provide improvements to many results
as the problems are very generic.

The final cryptographic building block that we looked at extensively was the
column-parity mixer (CPM) of Chapter 5. We studied many of its properties
and even designed a full permutation to showcase how CPMs can be integrated
in designs of cryptographic schemes. One idea already put forward in the
chapter is that it would be interesting to learn more about the relation between
the density of a parity-folding matrix, the quality of the diffusion, and the
implementation cost. There might be some optimal trade-off. Another direction
that could be taken is to see whether there are better transposition layers that
combine well with CPMs.

239

Chapter 10. Conclusions and Outlook

In Chapter 6 we showed speed-optimized assembly implementation of
AES for the ARM Cortex-M3 and Cortex-M4. Despite the fact that none of
the techniques are particularly new, the implementation did improve over the
previous state of the art by quite a lot. This is partially due to a custom instruction
scheduler and register allocator used for SubBytes, but also due to meticulously
taking microarchitectural properties, such as alignment and pipelining, into
account. Especially for embedded applications it holds that cryptography can
be a performance bottleneck for an application, so we hope that our effort
contributes to alleviating these costs.

Chapter 7 considers speed-optimized implementations of various crypto-
graphic primitives on the RISC-V architecture and is somewhat more experi-
mental in nature, in the sense that not a lot of optimization work had been done
on this architecture before. One of the outcomes is that comparisons between
RISC-V implementations will be painful due to the large number of optional
instruction-set extensions. An extension with some extra instructions can have
a large impact on what is the optimal implementation strategy for a particular
cryptographic algorithm. It would be useful if, while the RISC-V project matures
and more extension specifications are frozen, the supported extensions converge
to a subset that is commonly available and can be used in comparisons.

In the final part we looked at countermeasures against side-channel analysis.
Chapter 8 proposed a parallel implementation strategy for higher-order masking
of AES. We showed how 4-share and 8-share implementations of AES can be
done efficiently on an ARM Cortex-A8 with parallelism provided by NEON
using gadgets that are proven to be SNI. We also performed an extensive side-
channel evaluation. It would be interesting to find out why the order reduction
happens as we observed and to find more efficient SNI gadgets that require less
randomness.

Requiring less randomness is taken to the extreme in Chapter 9, where we
showed how AES can be masked with two shares with just two random bits and
no ‘online’ randomness whatsoever. We formally verified that our approach

240

achieves first-order security in the probing model. While the implementation
will not protect from a DPA attack in practice, it is an interesting experiment
that raises many questions. One of them has been open for a while and that is if
something meaningful can be said about the amount and quality of randomness
that is needed to thwart DPA attacks in practice. On the more theoretical side, it
is still unclear how to extend a masking scheme like the one presented here to
higher orders.

These are just some examples of possible future directions based on the
results presented in this thesis on optimizations in symmetric cryptography.
Naturally, many more questions can be raised that may inspire new research.
Scientific research progresses exactly because of this mechanic: an everlasting
cycle of questions and attempts at answers. While the work presented in this
thesis feels like a big deal to me personally as it captures years of work, it remains
but a speck of dust in the grander scheme of science. As long as there are people
that find my answers useful or inspiring, then at least it was a time well spent.

241

Bibliography

[ABB+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx,
Florian Mendel, Bart Mennink, Nicky Mouha, Qingju Wang, and
Kan Yasuda. PRIMATEs v1.02. CAESAR submission. Sept. 2014.
url: https://competitions.cr.yp.to/round2/primatesv102.
pdf.

[ABM04] Kubilay Atasu, Luca Breveglieri, and Marco Macchetti. “Efficient
AES Implementations for ARM Based Platforms”. In: Proceedings

of the 2004 ACM Symposium on Applied Computing. SAC ’04. ACM,
Mar. 2004, pp. 841–845. doi: 10.1145/967900.968073.

[ADK+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor
Leander, Christof Paar, and Tolga Yalçin. “Block Ciphers - Focus
on the Linear Layer (feat. PRIDE)”. In: Advances in Cryptology –

CRYPTO 2014, Part I. Ed. by Juan A. Garay and Rosario Gennaro.
Vol. 8616. Lecture Notes in Computer Science. Springer, Heidelberg,
Aug. 2014, pp. 57–76. doi: 10.1007/978-3-662-44371-2_4.

[ARM15] ARM Holdings plc. ARM’s Cortex-M and Cortex-R Embedded Proces-

sors. 2015. url: https://www.arm.com/zh/files/event/2_2015_
ARM_Embedded_Seminar_Ian_Johnson.pdf.

[ARS+15] Martin R. Albrecht, Christian Rechberger, Thomas Schneider,
Tyge Tiessen, and Michael Zohner. “Ciphers for MPC and FHE”.
In: Advances in Cryptology – EUROCRYPT 2015, Part I. Ed. by
Elisabeth Oswald and Marc Fischlin. Vol. 9056. Lecture Notes in
Computer Science. Springer, Heidelberg, Apr. 2015, pp. 430–454.
doi: 10.1007/978-3-662-46800-5_17.

[Ava17] Roberto Avanzi. “The QARMA Block Cipher Family”. In: IACR

Transactions on Symmetric Cryptology 2017.1 (2017), pp. 4–44. issn:
2519-173X. doi: 10.13154/tosc.v2017.i1.4-44.

[BBC+19] Gilles Barthe, Sonia Belaïd, Gaëtan Cassiers, Pierre-Alain Fouque,
Benjamin Grégoire, and François-Xavier Standaert. “maskVerif:
Automated Verification of Higher-Order Masking in Presence of
Physical Defaults”. In: ESORICS 2019: 24th European Symposium

on Research in Computer Security, Part I. Ed. by Kazue Sako, Steve
Schneider, and Peter Y. A. Ryan. Vol. 11735. Lecture Notes in

243

https://competitions.cr.yp.to/round2/primatesv102.pdf
https://competitions.cr.yp.to/round2/primatesv102.pdf
https://doi.org/10.1145/967900.968073
https://doi.org/10.1007/978-3-662-44371-2_4
https://www.arm.com/zh/files/event/2_2015_ARM_Embedded_Seminar_Ian_Johnson.pdf
https://www.arm.com/zh/files/event/2_2015_ARM_Embedded_Seminar_Ian_Johnson.pdf
https://doi.org/10.1007/978-3-662-46800-5_17
https://doi.org/10.13154/tosc.v2017.i1.4-44

Bibliography

Computer Science. Springer, Heidelberg, Sept. 2019, pp. 300–318.
doi: 10.1007/978-3-030-29959-0_15.

[BBD+15] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain
Fouque, Benjamin Grégoire, and Pierre-Yves Strub. “Verified Proofs
of Higher-Order Masking”. In: Advances in Cryptology – EURO-

CRYPT 2015, Part I. Ed. by Elisabeth Oswald and Marc Fischlin.
Vol. 9056. Lecture Notes in Computer Science. Springer, Heidelberg,
Apr. 2015, pp. 457–485. doi: 10.1007/978-3-662-46800-5_18.

[BBD+16] Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain
Fouque, Benjamin Grégoire, Pierre-Yves Strub, and Rébecca Zuc-
chini. “Strong Non-Interference and Type-Directed Higher-Order
Masking”. In: ACM CCS 2016: 23rd Conference on Computer and Com-

munications Security. Ed. by Edgar R. Weippl, Stefan Katzenbeisser,
Christopher Kruegel, Andrew C. Myers, and Shai Halevi. ACM
Press, Oct. 2016, pp. 116–129. doi: 10.1145/2976749.2978427.

[BBF+03] Guido Bertoni, Luca Breveglieri, Pasqualina Fragneto, Marco Mac-
chetti, and Stefano Marchesin. “Efficient Software Implementation
of AES on 32-Bit Platforms”. In: Cryptographic Hardware and Em-

bedded Systems – CHES 2002. Ed. by Burton S. Kaliski Jr., Çetin
Kaya Koç, and Christof Paar. Vol. 2523. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Aug. 2003, pp. 159–171. doi:
10.1007/3-540-36400-5_13.

[BBI+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibu-
tani, Harunaga Hiwatari, Toru Akishita, and Francesco Regazzoni.
“Midori: A Block Cipher for Low Energy”. In: Advances in Cryptology

– ASIACRYPT 2015, Part II. Ed. by Tetsu Iwata and Jung Hee Cheon.
Vol. 9453. Lecture Notes in Computer Science. Springer, Heidelberg,
Nov. 2015, pp. 411–436. doi: 10.1007/978-3-662-48800-3_17.

[BBK+13] Begül Bilgin, Andrey Bogdanov, Miroslav Knežević, Florian Mendel,
and Qingju Wang. “Fides: Lightweight Authenticated Cipher with
Side-Channel Resistance for Constrained Hardware”. In: Crypto-

graphic Hardware and Embedded Systems – CHES 2013. Ed. by Guido
Bertoni and Jean-Sébastien Coron. Vol. 8086. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 2013, pp. 142–158.
doi: 10.1007/978-3-642-40349-1_9.

244

https://doi.org/10.1007/978-3-030-29959-0_15
https://doi.org/10.1007/978-3-662-46800-5_18
https://doi.org/10.1145/2976749.2978427
https://doi.org/10.1007/3-540-36400-5_13
https://doi.org/10.1007/978-3-662-48800-3_17
https://doi.org/10.1007/978-3-642-40349-1_9

Bibliography

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel
Prouff, Adrian Thillard, and Damien Vergnaud. “Randomness
Complexity of Private Circuits for Multiplication”. In: Advances

in Cryptology – EUROCRYPT 2016, Part II. Ed. by Marc Fischlin
and Jean-Sébastien Coron. Vol. 9666. Lecture Notes in Computer
Science. Springer, Heidelberg, May 2016, pp. 616–648. doi: 10.
1007/978-3-662-49896-5_22.

[BBP+17] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel
Prouff, Adrian Thillard, and Damien Vergnaud. “Private Multipli-
cation over Finite Fields”. In: Advances in Cryptology – CRYPTO

2017, Part III. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10403.
Lecture Notes in Computer Science. Springer, Heidelberg, Aug.
2017, pp. 397–426. doi: 10.1007/978-3-319-63697-9_14.

[BBR16a] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni.
Atomic-AES v2.0. Cryptology ePrint Archive, Report 2016/1005.
2016. url: https://eprint.iacr.org/2016/1005.

[BBR16b] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni.
“Atomic-AES: A Compact Implementation of the AES Encryp-
tion/Decryption Core”. In: Progress in Cryptology - INDOCRYPT

2016: 17th International Conference in Cryptology in India. Ed. by
Orr Dunkelman and Somitra Kumar Sanadhya. Vol. 10095. Lec-
ture Notes in Computer Science. Springer, Heidelberg, Dec. 2016,
pp. 173–190. doi: 10.1007/978-3-319-49890-4_10.

[BBS05] Eli Biham, Alex Biryukov, and Adi Shamir. “Cryptanalysis of
Skipjack Reduced to 31 Rounds Using Impossible Differentials”.
In: Journal of Cryptology 18.4 (Sept. 2005), pp. 291–311. doi: 10.
1007/s00145-005-0129-3.

[BC14] Daniel J. Bernstein and Tung Chou. “Faster Binary-Field Multipli-
cation and Faster Binary-Field MACs”. In: SAC 2014: 21st Annual

International Workshop on Selected Areas in Cryptography. Ed. by
Antoine Joux and Amr M. Youssef. Vol. 8781. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 2014, pp. 92–111.
doi: 10.1007/978-3-319-13051-4_6.

[BCG+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun,
Miroslav Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav
Nikov, Christof Paar, Christian Rechberger, Peter Rombouts, Søren
S. Thomsen, and Tolga Yalçin. “PRINCE - A Low-Latency Block

245

https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-662-49896-5_22
https://doi.org/10.1007/978-3-319-63697-9_14
https://eprint.iacr.org/2016/1005
https://doi.org/10.1007/978-3-319-49890-4_10
https://doi.org/10.1007/s00145-005-0129-3
https://doi.org/10.1007/s00145-005-0129-3
https://doi.org/10.1007/978-3-319-13051-4_6

Bibliography

Cipher for Pervasive Computing Applications - Extended Ab-
stract”. In: Advances in Cryptology – ASIACRYPT 2012. Ed. by
Xiaoyun Wang and Kazue Sako. Vol. 7658. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Dec. 2012, pp. 208–225. doi:
10.1007/978-3-642-34961-4_14.

[BCJ07] Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson. Efficient

Methods for Conversion and Solution of Sparse Systems of Low-Degree

Multivariate Polynomials over GF(2) via SAT-Solvers. Cryptology
ePrint Archive, Report 2007/024. 2007. url: https://eprint.
iacr.org/2007/024.

[BCL+04] Alex Biryukov, Christophe De Cannière, Joseph Lano, Siddika
Berna Ors, and Bart Preneel. Security and Performance Analysis of

ARIA. Jan. 2004. url: https://www.esat.kuleuven.be/cosic/
publications/article-500.pdf.

[BCL14] Daniel J. Bernstein, Chitchanok Chuengsatiansup, and Tanja Lange.
“Curve41417: Karatsuba Revisited”. In: Cryptographic Hardware and

Embedded Systems – CHES 2014. Ed. by Lejla Batina and Matthew
Robshaw. Vol. 8731. Lecture Notes in Computer Science. Springer,
Heidelberg, Sept. 2014, pp. 316–334. doi: 10.1007/978-3-662-
44709-3_18.

[BCLR17] Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella.
“Proving Resistance Against Invariant Attacks: How to Choose
the Round Constants”. In: Advances in Cryptology – CRYPTO 2017,

Part II. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10402.
Lecture Notes in Computer Science. Springer, Heidelberg, Aug.
2017, pp. 647–678. doi: 10.1007/978-3-319-63715-0_22.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. “Correlation
Power Analysis with a Leakage Model”. In: Cryptographic Hardware

and Embedded Systems – CHES 2004. Ed. by Marc Joye and Jean-
Jacques Quisquater. Vol. 3156. Lecture Notes in Computer Science.
Springer, Heidelberg, Aug. 2004, pp. 16–29. doi: 10.1007/978-3-
540-28632-5_2.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and
Rina Zeitoun. “Horizontal Side-Channel Attacks and Countermea-
sures on the ISW Masking Scheme”. In: Cryptographic Hardware

and Embedded Systems – CHES 2016. Ed. by Benedikt Gierlichs and
Axel Y. Poschmann. Vol. 9813. Lecture Notes in Computer Science.

246

https://doi.org/10.1007/978-3-642-34961-4_14
https://eprint.iacr.org/2007/024
https://eprint.iacr.org/2007/024
https://www.esat.kuleuven.be/cosic/publications/article-500.pdf
https://www.esat.kuleuven.be/cosic/publications/article-500.pdf
https://doi.org/10.1007/978-3-662-44709-3_18
https://doi.org/10.1007/978-3-662-44709-3_18
https://doi.org/10.1007/978-3-319-63715-0_22
https://doi.org/10.1007/978-3-540-28632-5_2
https://doi.org/10.1007/978-3-540-28632-5_2

Bibliography

Springer, Heidelberg, Aug. 2016, pp. 23–39. doi: 10.1007/978-3-
662-53140-2_2.

[BDCU17] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko.
“Optimal First-Order Boolean Masking for Embedded IoT Devices”.
In: Smart Card Research and Advanced Applications – CARDIS 2017.
Ed. by Thomas Eisenbarth and Yannick Teglia. Vol. 10728. Lecture
Notes in Computer Science. Springer, Heidelberg, Jan. 2017, pp. 22–
41. doi: 10.1007/978-3-319-75208-2_2.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Gré-
goire, François-Xavier Standaert, and Pierre-Yves Strub. “Parallel
Implementations of Masking Schemes and the Bounded Moment
Leakage Model”. In: Advances in Cryptology – EUROCRYPT 2017,

Part I. Ed. by Jean-Sébastien Coron and Jesper Buus Nielsen.
Vol. 10210. Lecture Notes in Computer Science. Springer, Heidel-
berg, Apr. 2017, pp. 535–566. doi: 10.1007/978-3-319-56620-
7_19.

[BDH+] Guido Bertoni, Joan Daemen, Seth Hoffert, Michaël Peeters, Gilles
Van Assche, and Ronny Van Keer. eXtended Keccak Code Package.
url: https://github.com/XKCP/XKCP.

[BDP+12] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Ass-
che, and Ronny Van Keer. Keccak implementation overview. Ver-
sion 3.2. May 2012. url: https://keccak.team/files/Keccak-
implementation-3.2.pdf.

[BDP+16a] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Ketje v2. CAESAR submission. Sept. 2016.
url: https://keccak.team/files/Ketjev2-doc2.0.pdf.

[BDP+16b] Guido Bertoni, Joan Daemen, Michaël Peeters, Gilles Van Assche,
and Ronny Van Keer. Keyak v2. CAESAR submission. Sept. 2016.
url: https://keccak.team/files/Keyakv2-doc2.2.pdf.

[BDPV11a] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. Cryptographic sponge functions. Jan. 2011. url: https://
keccak.team/files/CSF-0.1.pdf.

[BDPV11b] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van
Assche. The Keccak reference. Jan. 2011. url: https://keccak.team/
files/Keccak-reference-3.0.pdf.

247

https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-662-53140-2_2
https://doi.org/10.1007/978-3-319-75208-2_2
https://doi.org/10.1007/978-3-319-56620-7_19
https://doi.org/10.1007/978-3-319-56620-7_19
https://github.com/XKCP/XKCP
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Keccak-implementation-3.2.pdf
https://keccak.team/files/Ketjev2-doc2.0.pdf
https://keccak.team/files/Keyakv2-doc2.2.pdf
https://keccak.team/files/CSF-0.1.pdf
https://keccak.team/files/CSF-0.1.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf
https://keccak.team/files/Keccak-reference-3.0.pdf

Bibliography

[Bea75] Kenneth G. Beauchamp. Walsh Functions and their Applications.
Academic Press, 1975. isbn: 0-12-084050-2.

[Ber05a] Daniel J. Bernstein. Cache-timing attacks on AES. Apr. 2005. url:
https://cr.yp.to/antiforgery/cachetiming-20050414.pdf.

[Ber05b] Daniel J. Bernstein. “The Poly1305-AES Message-Authentication
Code”. In: Fast Software Encryption – FSE 2005. Ed. by Henri Gilbert
and Helena Handschuh. Vol. 3557. Lecture Notes in Computer
Science. Springer, Heidelberg, Feb. 2005, pp. 32–49. doi: 10.1007/
11502760_3.

[Ber08a] Daniel J. Bernstein. ChaCha, a variant of Salsa20. Jan. 2008. url:
https://cr.yp.to/chacha/chacha-20080120.pdf.

[Ber08b] Daniel J. Bernstein. “The Salsa20 Family of Stream Ciphers”. In:
New Stream Cipher Designs: The eSTREAM Finalists. Ed. by Matthew
Robshaw and Olivier Billet. Vol. 4986. Lecture Notes in Computer
Science. Springer, Heidelberg, 2008, pp. 84–97. isbn: 978-3-540-
68351-3. doi: 10.1007/978-3-540-68351-3_8.

[Ber09] Daniel J. Bernstein. Optimizing linear maps modulo 2. Workshop
Record of SPEED-CC – Software Performance Enhancement for
Encryption and Decryption and Cryptographic Compilers. Aug.
2009. url: https://binary.cr.yp.to/linearmod2-20090830.
pdf.

[BFG+17] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglia-
longa, and François-Xavier Standaert. “Consolidating Inner Prod-
uct Masking”. In: Advances in Cryptology – ASIACRYPT 2017,

Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin. Vol. 10624.
Lecture Notes in Computer Science. Springer, Heidelberg, Dec.
2017, pp. 724–754. doi: 10.1007/978-3-319-70694-8_25.

[BFP19] Joan Boyar, Magnus Gausdal Find, and René Peralta. “Small low-
depth circuits for cryptographic applications”. In: Cryptography

and Communications 11.1 (Jan. 2019), pp. 109–127. issn: 1936-2455.
doi: 10.1007/s12095-018-0296-3.

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz,
and François-Xavier Standaert. “On the Cost of Lazy Engineering
for Masked Software Implementations”. In: Smart Card Research and

Advanced Applications – CARDIS 2014. Ed. by Marc Joye and Amir
Moradi. Vol. 8968. Lecture Notes in Computer Science. Springer,

248

https://cr.yp.to/antiforgery/cachetiming-20050414.pdf
https://doi.org/10.1007/11502760_3
https://doi.org/10.1007/11502760_3
https://cr.yp.to/chacha/chacha-20080120.pdf
https://doi.org/10.1007/978-3-540-68351-3_8
https://binary.cr.yp.to/linearmod2-20090830.pdf
https://binary.cr.yp.to/linearmod2-20090830.pdf
https://doi.org/10.1007/978-3-319-70694-8_25
https://doi.org/10.1007/s12095-018-0296-3

Bibliography

Heidelberg, 2014, pp. 64–81. isbn: 978-3-319-16763-3. doi: 10.1007/
978-3-319-16763-3_5.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer,
Stefan Mangard, and Johannes Winter. “Formal Verification of
Masked Hardware Implementations in the Presence of Glitches”.
In: Advances in Cryptology – EUROCRYPT 2018, Part II. Ed. by
Jesper Buus Nielsen and Vincent Rĳmen. Vol. 10821. Lecture Notes
in Computer Science. Springer, Heidelberg, Apr. 2018, pp. 321–353.
doi: 10.1007/978-3-319-78375-8_11.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov,
and Vincent Rĳmen. “A More Efficient AES Threshold Implemen-
tation”. In: AFRICACRYPT 14: 7th International Conference on Cryp-

tology in Africa. Ed. by David Pointcheval and Damien Vergnaud.
Vol. 8469. Lecture Notes in Computer Science. Springer, Heidelberg,
May 2014, pp. 267–284. doi: 10.1007/978-3-319-06734-6_17.

[BGRV15] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid
Verbauwhede. “DPA, Bitslicing and Masking at 1 GHz”. In: Cryp-

tographic Hardware and Embedded Systems – CHES 2015. Ed. by Tim
Güneysu and Helena Handschuh. Vol. 9293. Lecture Notes in
Computer Science. Springer, Heidelberg, Sept. 2015, pp. 599–619.
doi: 10.1007/978-3-662-48324-4_30.

[Bih97] Eli Biham. “A Fast New DES Implementation in Software”. In:
Fast Software Encryption – FSE’97. Ed. by Eli Biham. Vol. 1267.
Lecture Notes in Computer Science. Springer, Heidelberg, Jan.
1997, pp. 260–272. doi: 10.1007/BFb0052352.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir
Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang
Meng Sim. “The SKINNY Family of Block Ciphers and Its Low-
Latency Variant MANTIS”. In: Advances in Cryptology – CRYPTO

2016, Part II. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9815.
Lecture Notes in Computer Science. Springer, Heidelberg, Aug.
2016, pp. 123–153. doi: 10.1007/978-3-662-53008-5_5.

[BJPW13] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild.
“Horizontal and Vertical Side-Channel Attacks against Secure RSA
Implementations”. In: Topics in Cryptology – CT-RSA 2013. Ed. by Ed
Dawson. Vol. 7779. Lecture Notes in Computer Science. Springer,

249

https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-16763-3_5
https://doi.org/10.1007/978-3-319-78375-8_11
https://doi.org/10.1007/978-3-319-06734-6_17
https://doi.org/10.1007/978-3-662-48324-4_30
https://doi.org/10.1007/BFb0052352
https://doi.org/10.1007/978-3-662-53008-5_5

Bibliography

Heidelberg, Feb. 2013, pp. 1–17. doi: 10.1007/978-3-642-36095-
4_1.

[BJPW14] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild.
“Horizontal Collision Correlation Attack on Elliptic Curves”. In:
SAC 2013: 20th Annual International Workshop on Selected Areas in

Cryptography. Ed. by Tanja Lange, Kristin Lauter, and Petr Lisonek.
Vol. 8282. Lecture Notes in Computer Science. Springer, Heidelberg,
Aug. 2014, pp. 553–570. doi: 10.1007/978-3-662-43414-7_28.

[BKL+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof
Paar, Axel Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and
C. Vikkelsoe. “PRESENT: An Ultra-Lightweight Block Cipher”. In:
Cryptographic Hardware and Embedded Systems – CHES 2007. Ed. by
Pascal Paillier and Ingrid Verbauwhede. Vol. 4727. Lecture Notes
in Computer Science. Springer, Heidelberg, Sept. 2007, pp. 450–466.
doi: 10.1007/978-3-540-74735-2_31.

[BKL+17] Daniel J. Bernstein, Stefan Kölbl, Stefan Lucks, Pedro Maat Costa
Massolino, Florian Mendel, Kashif Nawaz, Tobias Schneider, Pe-
ter Schwabe, François-Xavier Standaert, Yosuke Todo, and Benoît
Viguier. “Gimli : A Cross-Platform Permutation”. In: Cryptographic

Hardware and Embedded Systems – CHES 2017. Ed. by Wieland
Fischer and Naofumi Homma. Vol. 10529. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Sept. 2017, pp. 299–320. doi:
10.1007/978-3-319-66787-4_15.

[BKL16] Christof Beierle, Thorsten Kranz, and Gregor Leander. “Lightweight
Multiplication in GF(2𝑛) with Applications to MDS Matrices”. In:
Advances in Cryptology – CRYPTO 2016, Part I. Ed. by Matthew
Robshaw and Jonathan Katz. Vol. 9814. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Aug. 2016, pp. 625–653. doi:
10.1007/978-3-662-53018-4_23.

[BMP08] Joan Boyar, Philip Matthews, and René Peralta. “On the Shortest
Linear Straight-Line Program for Computing Linear Forms”. In:
Mathematical Foundations of Computer Science 2008. Ed. by Edward
Ochmanski and Jerzy Tyszkiewicz. Vol. 5162. Lecture Notes in
Computer Science. Springer, Heidelberg, 2008, pp. 168–179. isbn:
978-3-540-85237-7. doi: 10.1007/978-3-540-85238-4_13.

250

https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.1007/978-3-642-36095-4_1
https://doi.org/10.1007/978-3-662-43414-7_28
https://doi.org/10.1007/978-3-540-74735-2_31
https://doi.org/10.1007/978-3-319-66787-4_15
https://doi.org/10.1007/978-3-662-53018-4_23
https://doi.org/10.1007/978-3-540-85238-4_13

Bibliography

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. “Logic Minimiza-
tion Techniques with Applications to Cryptology”. In: Journal of

Cryptology 26.2 (Apr. 2013), pp. 280–312. doi: 10.1007/s00145-
012-9124-7.

[BNN+10] Paulo S. L. M. Barreto, Ventzislav Nikov, Svetla Nikova, Vincent
Rĳmen, and Elmar Tischhauser. “Whirlwind: a new cryptographic
hash function”. In: Designs, Codes and Cryptography 56.2–3 (Aug.
2010), pp. 141–162. issn: 1573-7586. doi: 10.1007/s10623-010-
9391-y.

[BP10] Joan Boyar and René Peralta. “A New Combinational Logic Mini-
mization Technique with Applications to Cryptology”. In: Experi-

mental Algorithms. Ed. by Paola Festa. Vol. 6049. Lecture Notes in
Computer Science. Springer, Heidelberg, 2010, pp. 178–189. isbn:
978-3-642-13192-9. doi: 10.1007/978-3-642-13193-6_16.

[BP12] Joan Boyar and René Peralta. “A Small Depth-16 Circuit for the
AES S-Box”. In: Information Security and Privacy Research – SEC

2010. Vol. 376. IFIP Advances in Information and Communication
Technology. Springer, Heidelberg, 2012, pp. 287–298. doi: 10.1007/
978-3-642-30436-1_24.

[BPP00] Joan Boyar, René Peralta, and Denis Pochuev. “On the multiplica-
tive complexity of Boolean functions over the basis (∧, ⊕, 1)”. In:
Theoretical Computer Science 235.1 (2000), pp. 43–57. issn: 0304-3975.
doi: 10.1016/S0304-3975(99)00182-6.

[BR00a] Paulo S. L. M. Barreto and Vincent Rĳmen. The ANUBIS Block

Cipher. First Open NESSIE Workshop. 2000.
[BR00b] Paulo S. L. M. Barreto and Vincent Rĳmen. The Khazad legacy-level

Block Cipher. First Open NESSIE Workshop. 2000.
[BR00c] Paulo S. L. M. Barreto and Vincent Rĳmen. The Whirlpool Hashing

Function. First Open NESSIE Workshop. 2000.
[BS08] Daniel J. Bernstein and Peter Schwabe. “New AES Software Speed

Records”. In: Progress in Cryptology - INDOCRYPT 2008: 9th Inter-

national Conference in Cryptology in India. Ed. by Dipanwita Roy
Chowdhury, Vincent Rĳmen, and Abhĳit Das. Vol. 5365. Lec-
ture Notes in Computer Science. Springer, Heidelberg, Dec. 2008,
pp. 322–336.

251

https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/s00145-012-9124-7
https://doi.org/10.1007/s10623-010-9391-y
https://doi.org/10.1007/s10623-010-9391-y
https://doi.org/10.1007/978-3-642-13193-6_16
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1007/978-3-642-30436-1_24
https://doi.org/10.1016/S0304-3975(99)00182-6

Bibliography

[BS12] Daniel J. Bernstein and Peter Schwabe. “NEON Crypto”. In: Cryp-

tographic Hardware and Embedded Systems – CHES 2012. Ed. by
Emmanuel Prouff and Patrick Schaumont. Vol. 7428. Lecture Notes
in Computer Science. Springer, Heidelberg, Sept. 2012, pp. 320–339.
doi: 10.1007/978-3-642-33027-8_19.

[BS91] Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like
Cryptosystems”. In: Journal of Cryptology 4.1 (Jan. 1991), pp. 3–72.
doi: 10.1007/BF00630563.

[BU08] David Buchfuhrer and Christopher Umans. “The Complexity of
Boolean Formula Minimization”. In: Automata, Languages and Pro-

gramming. Ed. by Luca Aceto, Ivan Damgård, Leslie Ann Goldberg,
Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz.
Vol. 5125. Lecture Notes in Computer Science. Springer, Heidel-
berg, 2008, pp. 24–35. isbn: 978-3-540-70574-1. doi: 10.1007/978-
3-540-70575-8_3.

[BW99] Alex Biryukov and David Wagner. “Slide Attacks”. In: Fast Soft-

ware Encryption – FSE’99. Ed. by Lars R. Knudsen. Vol. 1636.
Lecture Notes in Computer Science. Springer, Heidelberg, Mar.
1999, pp. 245–259. doi: 10.1007/3-540-48519-8_18.

[Can05] David Canright. “A Very Compact S-Box for AES”. In: Cryptographic

Hardware and Embedded Systems – CHES 2005. Ed. by Josyula R. Rao
and Berk Sunar. Vol. 3659. Lecture Notes in Computer Science.
Springer, Heidelberg, Aug. 2005, pp. 441–455. doi: 10 . 1007 /
11545262_32.

[CB08] David Canright and Lejla Batina. “A Very Compact “Perfectly
Masked” S-Box for AES”. In: ACNS 08: 6th International Conference

on Applied Cryptography and Network Security. Ed. by Steven M.
Bellovin, Rosario Gennaro, Angelos D. Keromytis, and Moti Yung.
Vol. 5037. Lecture Notes in Computer Science. Springer, Heidelberg,
June 2008, pp. 446–459. doi: 10.1007/978-3-540-68914-0_27.

[CBG+17] Thomas De Cnudde, Begül Bilgin, Benedikt Gierlichs, Ventzislav
Nikov, Svetla Nikova, and Vincent Rĳmen. “Does Coupling Affect
the Security of Masked Implementations?” In: COSADE 2017: 8th

International Workshop on Constructive Side-Channel Analysis and

Secure Design. Ed. by Sylvain Guilley. Vol. 10348. Lecture Notes in
Computer Science. Springer, Heidelberg, Apr. 2017, pp. 1–18. doi:
10.1007/978-3-319-64647-3_1.

252

https://doi.org/10.1007/978-3-642-33027-8_19
https://doi.org/10.1007/BF00630563
https://doi.org/10.1007/978-3-540-70575-8_3
https://doi.org/10.1007/978-3-540-70575-8_3
https://doi.org/10.1007/3-540-48519-8_18
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/11545262_32
https://doi.org/10.1007/978-3-540-68914-0_27
https://doi.org/10.1007/978-3-319-64647-3_1

Bibliography

[CDG+13] Jeremy Cooper, Elke DeMulder, Gilbert Goodwill, Joshua Jaffe,
Gary Kenworthy, and Pankaj Rohatgi. Test Vector Leakage Assessment

(TVLA) methodology in practice. 2013.
[CHM11] Nicolas T. Courtois, Daniel Hulme, and Theodosis Mourouzis.

Solving Circuit Optimisation Problems in Cryptography and Crypt-

analysis. Cryptology ePrint Archive, Report 2011/475. 2011. url:
https://eprint.iacr.org/2011/475.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Ro-
hatgi. “Towards Sound Approaches to Counteract Power-Analysis
Attacks”. In: Advances in Cryptology – CRYPTO’99. Ed. by Michael J.
Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 1999, pp. 398–412. doi: 10.1007/3-540-48405-
1_26.

[CMH13] Nicolas Courtois, Theodosis Mourouzis, and Daniel Hulme. “Exact
Logic Minimization and Multiplicative Complexity of Concrete
Algebraic and Cryptographic Circuits”. In: International Journal

On Advances in Intelligent Systems 6.3&4 (2013), pp. 165–176. issn:
1942-2679.

[CMR05] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. “Small Scale
Variants of the AES”. In: Fast Software Encryption – FSE 2005. Ed. by
Henri Gilbert and Helena Handschuh. Vol. 3557. Lecture Notes in
Computer Science. Springer, Heidelberg, Feb. 2005, pp. 145–162.
doi: 10.1007/11502760_10.

[CMV09] Benjamin Chambers, Panagiotis Manolios, and Daron Vroon.
“Faster SAT Solving with Better CNF Generation”. In: Proceed-

ings of the Conference on Design, Automation and Test in Europe. DATE
’09. European Design and Automation Association, Apr. 2009,
pp. 1590–1595. isbn: 978-3-9810801-5-5. url: https://dl.acm.
org/citation.cfm?id=1874620.1875002.

[CPRR14] Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and
Thomas Roche. “Higher-Order Side Channel Security and Mask
Refreshing”. In: Fast Software Encryption – FSE 2013. Ed. by Shiho
Moriai. Vol. 8424. Lecture Notes in Computer Science. Springer,
Heidelberg, Mar. 2014, pp. 410–424. doi: 10.1007/978-3-662-
43933-3_21.

253

https://eprint.iacr.org/2011/475
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/3-540-48405-1_26
https://doi.org/10.1007/11502760_10
https://dl.acm.org/citation.cfm?id=1874620.1875002
https://dl.acm.org/citation.cfm?id=1874620.1875002
https://doi.org/10.1007/978-3-662-43933-3_21
https://doi.org/10.1007/978-3-662-43933-3_21

Bibliography

[CYK+12] Jiali Choy, Huihui Yap, Khoongming Khoo, Jian Guo, Thomas
Peyrin, Axel Poschmann, and Chik How Tan. “SPN-Hash: Improv-
ing the Provable Resistance against Differential Collision Attacks”.
In: AFRICACRYPT 12: 5th International Conference on Cryptology in

Africa. Ed. by Aikaterini Mitrokotsa and Serge Vaudenay. Vol. 7374.
Lecture Notes in Computer Science. Springer, Heidelberg, July
2012, pp. 270–286. doi: 10.1007/978-3-642-31410-0_17.

[Dae17] Joan Daemen. “Changing of the Guards: A Simple and Efficient
Method for Achieving Uniformity in Threshold Sharing”. In: Cryp-

tographic Hardware and Embedded Systems – CHES 2017. Ed. by
Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture Notes
in Computer Science. Springer, Heidelberg, Sept. 2017, pp. 137–153.
doi: 10.1007/978-3-319-66787-4_7.

[Dae95] Joan Daemen. “Cipher and hash function design strategies based
on linear and differential cryptanalysis”. PhD thesis. KU Leuven,
Mar. 1995.

[DCK+15] Daniel Dinu, Yann Le Corre, Dmitry Khovratovich, Léo Perrin,
Johann Großschädl, and Alex Biryukov. Triathlon of Lightweight

Block Ciphers for the Internet of Things. Cryptology ePrint Archive,
Report 2015/209. 2015. url: https://eprint.iacr.org/2015/
209.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. “Uni-
fying Leakage Models: From Probing Attacks to Noisy Leakage”.
In: Advances in Cryptology – EUROCRYPT 2014. Ed. by Phong Q.
Nguyen and Elisabeth Oswald. Vol. 8441. Lecture Notes in Com-
puter Science. Springer, Heidelberg, May 2014, pp. 423–440. doi:
10.1007/978-3-642-55220-5_24.

[DEMS16] Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and
Martin Schläffer. Ascon v1.2. CAESAR submission. Sept. 2016. url:
https://ascon.iaik.tugraz.at/files/asconv12.pdf.

[DES77] Data Encryption Standard. National Bureau of Standards, NBS FIPS
PUB 46, U.S. Department of Commerce. Jan. 1977.

[DF03] David S. Dummit and Richard M. Foote. Abstract Algebra. 3rd ed.
John Wiley and Sons, Inc., 2003. isbn: 978-0-471-43334-7.

254

https://doi.org/10.1007/978-3-642-31410-0_17
https://doi.org/10.1007/978-3-319-66787-4_7
https://eprint.iacr.org/2015/209
https://eprint.iacr.org/2015/209
https://doi.org/10.1007/978-3-642-55220-5_24
https://ascon.iaik.tugraz.at/files/asconv12.pdf

Bibliography

[DFS15] Alexandre Duc, Sebastian Faust, and François-Xavier Standaert.
“Making Masking Security Proofs Concrete - Or How to Evaluate
the Security of Any Leaking Device”. In: Advances in Cryptology

– EUROCRYPT 2015, Part I. Ed. by Elisabeth Oswald and Marc
Fischlin. Vol. 9056. Lecture Notes in Computer Science. Springer,
Heidelberg, Apr. 2015, pp. 401–429. doi: 10.1007/978-3-662-
46800-5_16.

[DGV93] Joan Daemen, René Govaerts, and Joos Vandewalle. “Block Ciphers
Based on Modular Arithmetic”. In: Proceedings of the 3rd Symposium

on the State and Progress of Research in Cryptography. Ed. by William
Wolfowicz. Feb. 1993, pp. 80–89.

[DHH+15] Michael Düll, Björn Haase, Gesine Hinterwälder, Michael Hutter,
Christof Paar, Ana Helena Sánchez, and Peter Schwabe. “High-
speed Curve25519 on 8-bit, 16-bit, and 32-bit microcontrollers”. In:
Designs, Codes and Cryptography 77.2–3 (Dec. 2015), pp. 493–514.
issn: 1573-7586. doi: 10.1007/s10623-015-0087-1.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rĳmen. “The Block
Cipher Square”. In: Fast Software Encryption – FSE’97. Ed. by Eli
Biham. Vol. 1267. Lecture Notes in Computer Science. Springer,
Heidelberg, Jan. 1997, pp. 149–165. doi: 10.1007/BFb0052343.

[DR02] Joan Daemen and Vincent Rĳmen. The Design of Rĳndael: AES -

The Advanced Encryption Standard. Information Security and Cryp-
tography. Springer, Heidelberg, 2002. isbn: 3-540-42580-2. doi:
10.1007/978-3-662-04722-4.

[DR06] Joan Daemen and Vincent Rĳmen. “Understanding Two-Round
Differentials in AES”. In: SCN 06: 5th International Conference on

Security in Communication Networks. Ed. by Roberto De Prisco and
Moti Yung. Vol. 4116. Lecture Notes in Computer Science. Springer,
Heidelberg, Sept. 2006, pp. 78–94. doi: 10.1007/11832072_6.

[DR99] Joan Daemen and Vincent Rĳmen. AES proposal: Rĳndael, version

2. Sept. 1999. url: https://csrc.nist.gov/archive/aes/
rijndael/Rijndael-ammended.pdf.

[DSP16] François Durvaux, François-Xavier Standaert, and Santos Merino
Del Pozo. “Towards Easy Leakage Certification”. In: Cryptographic

Hardware and Embedded Systems – CHES 2016. Ed. by Benedikt
Gierlichs and Axel Y. Poschmann. Vol. 9813. Lecture Notes in

255

https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/978-3-662-46800-5_16
https://doi.org/10.1007/s10623-015-0087-1
https://doi.org/10.1007/BFb0052343
https://doi.org/10.1007/978-3-662-04722-4
https://doi.org/10.1007/11832072_6
https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
https://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf

Bibliography

Computer Science. Springer, Heidelberg, Aug. 2016, pp. 40–60. doi:
10.1007/978-3-662-53140-2_3.

[DSV14] François Durvaux, François-Xavier Standaert, and Nicolas Veyrat-
Charvillon. “How to Certify the Leakage of a Chip?” In: Advances

in Cryptology – EUROCRYPT 2014. Ed. by Phong Q. Nguyen and
Elisabeth Oswald. Vol. 8441. Lecture Notes in Computer Science.
Springer, Heidelberg, May 2014, pp. 459–476. doi: 10.1007/978-
3-642-55220-5_26.

[EM93] Shimon Even and Yishay Mansour. “A Construction of a Cipher
From a Single Pseudorandom Permutation”. In: Advances in Cryp-

tology – ASIACRYPT’91. Ed. by Hideki Imai, Ronald L. Rivest, and
Tsutomu Matsumoto. Vol. 739. Lecture Notes in Computer Science.
Springer, Heidelberg, Nov. 1993, pp. 210–224. doi: 10.1007/3-
540-57332-1_17.

[ET93] Bradley Efron and Robert J. Tibshirani. An Introduction to the

Bootstrap. Chapman and Hall/CRC, 1993. isbn: 978-0412042317.
[FA19] Hayato Fujii and Diego F. Aranha. “Curve25519 for the Cortex-M4

and beyond”. In: LATINCRYPT 2017: 5th International Conference

on Cryptology and Information Security in Latin America. Ed. by
Tanja Lange and Orr Dunkelman. Vol. 11368. Lecture Notes in
Computer Science. Springer, Heidelberg, July 2019, pp. 109–127.
doi: 10.1007/978-3-030-25283-0_6.

[FBR06] Décio Luiz Gazzoni Filho, Paulo S. L. M. Barreto, and Vincent
Rĳmen. “The Maelstrom-0 Hash Function”. In: Anais do VI Simpósio

Brasileiro em Segurança da Informaçã e de Sistemas Computacionais.
2006.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara
Paglialonga, and François-Xavier Standaert. “Composable Mask-
ing Schemes in the Presence of Physical Defaults & the Robust
Probing Model”. In: IACR Transactions on Cryptographic Hardware

and Embedded Systems 2018.3 (2018). https://tches.iacr.org/
index.php/TCHES/article/view/7270, pp. 89–120. issn: 2569-
2925. doi: 10.13154/tches.v2018.i3.89-120.

[FPS17] Sebastian Faust, Clara Paglialonga, and Tobias Schneider. “Amor-
tizing Randomness Complexity in Private Circuits”. In: Advances in

Cryptology – ASIACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi and
Thomas Peyrin. Vol. 10624. Lecture Notes in Computer Science.

256

https://doi.org/10.1007/978-3-662-53140-2_3
https://doi.org/10.1007/978-3-642-55220-5_26
https://doi.org/10.1007/978-3-642-55220-5_26
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/3-540-57332-1_17
https://doi.org/10.1007/978-3-030-25283-0_6
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://tches.iacr.org/index.php/TCHES/article/view/7270
https://doi.org/10.13154/tches.v2018.i3.89-120

Bibliography

Springer, Heidelberg, Dec. 2017, pp. 781–810. doi: 10.1007/978-
3-319-70694-8_27.

[FS10] Carsten Fuhs and Peter Schneider-Kamp. “Synthesizing Shortest
Linear Straight-Line Programs over GF(2) Using SAT”. In: Theory

and Applications of Satisfiability Testing – SAT 2010. Ed. by Ofer
Strichman and Stefan Szeider. Vol. 6175. Lecture Notes in Computer
Science. Springer, Heidelberg, 2010, pp. 71–84. isbn: 978-3-642-
14185-0. doi: 10.1007/978-3-642-14186-7_8.

[FS12] Carsten Fuhs and Peter Schneider-Kamp. “Optimizing the AES S-
Box using SAT”. In: IWIL 2010. The 8th International Workshop on the

Implementation of Logics. Ed. by Geoff Sutcliffe, Stephan Schulz, and
Eugenia Ternovska. Vol. 2. EPiC Series in Computing. EasyChair,
2012, pp. 64–70. doi: 10.29007/h5s4.

[GD17] Ashrujit Ghoshal and Thomas De Cnudde. “Several Masked Im-
plementations of the Boyar-Peralta AES S-Box”. In: Progress in

Cryptology - INDOCRYPT 2017: 18th International Conference in Cryp-

tology in India. Ed. by Arpita Patra and Nigel P. Smart. Vol. 10698.
Lecture Notes in Computer Science. Springer, Heidelberg, Dec.
2017, pp. 384–402.

[GIB18] Hannes Gross, Rinat Iusupov, and Roderick Bloem. “Generic
Low-Latency Masking in Hardware”. In: IACR Transactions on

Cryptographic Hardware and Embedded Systems 2018.2 (2018). https:
//tches.iacr.org/index.php/TCHES/article/view/871, pp. 1–
21. issn: 2569-2925. doi: 10.13154/tches.v2018.i2.1-21.

[GKM+] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz,
Florian Mendel, Christian Rechberger, Martin Schläffer, and Søren
S. Thomsen. Grøstl – a SHA-3 candidate. Submitted to SHA-3.

[GM17] Hannes Groß and Stefan Mangard. “Reconciling 𝑑 + 1 Masking
in Hardware and Software”. In: Cryptographic Hardware and Em-

bedded Systems – CHES 2017. Ed. by Wieland Fischer and Naofumi
Homma. Vol. 10529. Lecture Notes in Computer Science. Springer,
Heidelberg, Sept. 2017, pp. 115–136. doi: 10.1007/978-3-319-
66787-4_6.

[GM18] Hannes Groß and Stefan Mangard. “A unified masking approach”.
In: Journal of Cryptographic Engineering 8.2 (June 2018), pp. 109–124.
doi: 10.1007/s13389-018-0184-y.

257

https://doi.org/10.1007/978-3-319-70694-8_27
https://doi.org/10.1007/978-3-319-70694-8_27
https://doi.org/10.1007/978-3-642-14186-7_8
https://doi.org/10.29007/h5s4
https://tches.iacr.org/index.php/TCHES/article/view/871
https://tches.iacr.org/index.php/TCHES/article/view/871
https://doi.org/10.13154/tches.v2018.i2.1-21
https://doi.org/10.1007/978-3-319-66787-4_6
https://doi.org/10.1007/978-3-319-66787-4_6
https://doi.org/10.1007/s13389-018-0184-y

Bibliography

[GMK16] Hannes Gross, Stefan Mangard, and Thomas Korak. Domain-

Oriented Masking: Compact Masked Hardware Implementations with

Arbitrary Protection Order. Cryptology ePrint Archive, Report
2016/486. 2016. url: https://eprint.iacr.org/2016/486.

[GMO01] Karine Gandolfi, Christophe Mourtel, and Francis Olivier. “Electro-
magnetic Analysis: Concrete Results”. In: Cryptographic Hardware

and Embedded Systems – CHES 2001. Ed. by Çetin Kaya Koç, David
Naccache, and Christof Paar. Vol. 2162. Lecture Notes in Com-
puter Science. Springer, Heidelberg, May 2001, pp. 251–261. doi:
10.1007/3-540-44709-1_21.

[GP99] Louis Goubin and Jacques Patarin. “DES and Differential Power
Analysis (The “Duplication” Method)”. In: Cryptographic Hard-

ware and Embedded Systems – CHES’99. Ed. by Çetin Kaya Koç
and Christof Paar. Vol. 1717. Lecture Notes in Computer Science.
Springer, Heidelberg, Aug. 1999, pp. 158–172. doi: 10.1007/3-
540-48059-5_15.

[GPP+17] Wouter de Groot, Kostas Papagiannopoulos, Antonio de la Piedra,
Erik Schneider, and Lejla Batina. “Bitsliced Masking and ARM:
Friends or Foes?” In: LightSec 2016: 5th International Workshop on

Lightweight Cryptography for Security and Privacy. Ed. by Andrey
Bogdanov. Vol. 10098. Lecture Notes in Computer Science. Springer,
Heidelberg, Mar. 2017, pp. 91–109. doi: 10.1007/978-3-319-
55714-4_7.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. “The PHOTON
Family of Lightweight Hash Functions”. In: Advances in Cryptology

– CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841. Lecture Notes
in Computer Science. Springer, Heidelberg, Aug. 2011, pp. 222–239.
doi: 10.1007/978-3-642-22792-9_13.

[GPPR11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B.
Robshaw. “The LED Block Cipher”. In: Cryptographic Hardware and

Embedded Systems – CHES 2011. Ed. by Bart Preneel and Tsuyoshi
Takagi. Vol. 6917. Lecture Notes in Computer Science. Springer,
Heidelberg, Sept. 2011, pp. 326–341. doi: 10.1007/978-3-642-
23951-9_22.

[GPSS18] Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe, and
Ko Stoffelen. “Vectorizing Higher-Order Masking”. In: COSADE

2018: 9th International Workshop on Constructive Side-Channel Analy-

258

https://eprint.iacr.org/2016/486
https://doi.org/10.1007/3-540-44709-1_21
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/3-540-48059-5_15
https://doi.org/10.1007/978-3-319-55714-4_7
https://doi.org/10.1007/978-3-319-55714-4_7
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/978-3-642-23951-9_22
https://doi.org/10.1007/978-3-642-23951-9_22

Bibliography

sis and Secure Design. Ed. by Junfeng Fan and Benedikt Gierlichs.
Vol. 10815. Lecture Notes in Computer Science. Springer, Heidel-
berg, Apr. 2018, pp. 23–43. doi: 10.1007/978-3-319-89641-0_2.

[GR13] Kishan Chand Gupta and Indranil Ghosh Ray. “On Constructions
of Involutory MDS Matrices”. In: AFRICACRYPT 13: 6th Inter-

national Conference on Cryptology in Africa. Ed. by Amr Youssef,
Abderrahmane Nitaj, and Aboul Ella Hassanien. Vol. 7918. Lec-
ture Notes in Computer Science. Springer, Heidelberg, June 2013,
pp. 43–60. doi: 10.1007/978-3-642-38553-7_3.

[GR17] Dahmun Goudarzi and Matthieu Rivain. “How Fast Can Higher-
Order Masking Be in Software?” In: Advances in Cryptology –

EUROCRYPT 2017, Part I. Ed. by Jean-Sébastien Coron and Jesper
Buus Nielsen. Vol. 10210. Lecture Notes in Computer Science.
Springer, Heidelberg, Apr. 2017, pp. 567–597. doi: 10.1007/978-
3-319-56620-7_20.

[GS18] Vincent Grosso and François-Xavier Standaert. “Masking Proofs
Are Tight and How to Exploit it in Security Evaluations”. In:
Advances in Cryptology – EUROCRYPT 2018, Part II. Ed. by Jesper
Buus Nielsen and Vincent Rĳmen. Vol. 10821. Lecture Notes in
Computer Science. Springer, Heidelberg, Apr. 2018, pp. 385–412.
doi: 10.1007/978-3-319-78375-8_13.

[GSD+19] Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn, and
Stefan Mangard. “First-Order Masking with Only Two Random
Bits”. In: Proceedings of ACM Workshop on Theory of Implementation

Security. Ed. by Begül Bilgin, Svetla Petkova-Nikova, and Vincent
Rĳmen. TIS’19. ACM, 2019, pp. 10–23. doi: 10.1145/3338467.
3358950.

[Ham09] Mike Hamburg. “Accelerating AES with Vector Permute Instruc-
tions”. In: Cryptographic Hardware and Embedded Systems – CHES

2009. Ed. by Christophe Clavier and Kris Gaj. Vol. 5747. Lec-
ture Notes in Computer Science. Springer, Heidelberg, Sept. 2009,
pp. 18–32. doi: 10.1007/978-3-642-04138-9_2.

[HKT15] Neil Hanley, HeeSeok Kim, and Michael Tunstall. “Exploiting
Collisions in Addition Chain-Based Exponentiation Algorithms
Using a Single Trace”. In: Topics in Cryptology – CT-RSA 2015. Ed.
by Kaisa Nyberg. Vol. 9048. Lecture Notes in Computer Science.

259

https://doi.org/10.1007/978-3-319-89641-0_2
https://doi.org/10.1007/978-3-642-38553-7_3
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-319-56620-7_20
https://doi.org/10.1007/978-3-319-78375-8_13
https://doi.org/10.1145/3338467.3358950
https://doi.org/10.1145/3338467.3358950
https://doi.org/10.1007/978-3-642-04138-9_2

Bibliography

Springer, Heidelberg, Apr. 2015, pp. 431–448. doi: 10.1007/978-
3-319-16715-2_23.

[HRS16] Andreas Hülsing, Joost Rĳneveld, and Peter Schwabe. “ARMed
SPHINCS - Computing a 41 KB Signature in 16 KB of RAM”. In:
PKC 2016: 19th International Conference on Theory and Practice of Public

Key Cryptography, Part I. Ed. by Chen-Mou Cheng, Kai-Min Chung,
Giuseppe Persiano, and Bo-Yin Yang. Vol. 9614. Lecture Notes in
Computer Science. Springer, Heidelberg, Mar. 2016, pp. 446–470.
doi: 10.1007/978-3-662-49384-7_17.

[ISW03] Yuval Ishai, Amit Sahai, and David Wagner. “Private Circuits:
Securing Hardware against Probing Attacks”. In: Advances in

Cryptology – CRYPTO 2003. Ed. by Dan Boneh. Vol. 2729. Lecture
Notes in Computer Science. Springer, Heidelberg, Aug. 2003,
pp. 463–481. doi: 10.1007/978-3-540-45146-4_27.

[JA09] Jorge Nakahara Jr. and Élcio Abrahão. “A New Involutory MDS
Matrix for the AES”. In: International Journal of Network Security

9.2 (Sept. 2009), pp. 109–116. issn: 1816-353X. url: http://ijns.
femto.com.tw/contents/ijns-v9-n2/ijns-2009-v9-n2-p109-
116.pdf.

[JMPS17] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich.
“Bit-Sliding: A Generic Technique for Bit-Serial Implementations
of SPN-based Primitives - Applications to AES, PRESENT and
SKINNY”. In: Cryptographic Hardware and Embedded Systems – CHES

2017. Ed. by Wieland Fischer and Naofumi Homma. Vol. 10529.
Lecture Notes in Computer Science. Springer, Heidelberg, Sept.
2017, pp. 687–707. doi: 10.1007/978-3-319-66787-4_33.

[JNP15] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik v1.3. CAESAR
submission. Aug. 2015. url: https://competitions.cr.yp.to/
round2/joltikv13.pdf.

[JPST17] Jérémy Jean, Thomas Peyrin, Siang Meng Sim, and Jade Tourteaux.
“Optimizing Implementations of Lightweight Building Blocks”. In:
IACR Transactions on Symmetric Cryptology 2017.4 (2017), pp. 130–
168. issn: 2519-173X. doi: 10.13154/tosc.v2017.i4.130-168.

[JS17] Anthony Journault and François-Xavier Standaert. “Very High
Order Masking: Efficient Implementation and Security Evaluation”.
In: Cryptographic Hardware and Embedded Systems – CHES 2017. Ed.
by Wieland Fischer and Naofumi Homma. Vol. 10529. Lecture

260

https://doi.org/10.1007/978-3-319-16715-2_23
https://doi.org/10.1007/978-3-319-16715-2_23
https://doi.org/10.1007/978-3-662-49384-7_17
https://doi.org/10.1007/978-3-540-45146-4_27
http://ijns.femto.com.tw/contents/ijns-v9-n2/ijns-2009-v9-n2-p109-116.pdf
http://ijns.femto.com.tw/contents/ijns-v9-n2/ijns-2009-v9-n2-p109-116.pdf
http://ijns.femto.com.tw/contents/ijns-v9-n2/ijns-2009-v9-n2-p109-116.pdf
https://doi.org/10.1007/978-3-319-66787-4_33
https://competitions.cr.yp.to/round2/joltikv13.pdf
https://competitions.cr.yp.to/round2/joltikv13.pdf
https://doi.org/10.13154/tosc.v2017.i4.130-168

Bibliography

Notes in Computer Science. Springer, Heidelberg, Sept. 2017,
pp. 623–643. doi: 10.1007/978-3-319-66787-4_30.

[JV04] Pascal Junod and Serge Vaudenay. “FOX: A New Family of Block
Ciphers”. In: SAC 2004: 11th Annual International Workshop on

Selected Areas in Cryptography. Ed. by Helena Handschuh and
Anwar Hasan. Vol. 3357. Lecture Notes in Computer Science.
Springer, Heidelberg, Aug. 2004, pp. 114–129. doi: 10.1007/978-
3-540-30564-4_8.

[Kav12] Selçuk Kavut. “Results on rotation-symmetric S-boxes”. In: Infor-

mation Sciences 201 (Oct. 2012), pp. 93–113. doi: 10.1016/j.ins.
2012.02.030.

[KHL11] HeeSeok Kim, Seokhie Hong, and Jongin Lim. “A Fast and Provably
Secure Higher-Order Masking of AES S-Box”. In: Cryptographic

Hardware and Embedded Systems – CHES 2011. Ed. by Bart Preneel
and Tsuyoshi Takagi. Vol. 6917. Lecture Notes in Computer Science.
Springer, Heidelberg, Sept. 2011, pp. 95–107. doi: 10.1007/978-3-
642-23951-9_7.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. “Differential Power
Analysis”. In: Advances in Cryptology – CRYPTO’99. Ed. by Michael
J. Wiener. Vol. 1666. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 1999, pp. 388–397. doi: 10.1007/3-540-48405-
1_25.

[KKP+04] Daesung Kwon, Jaesung Kim, Sangwoo Park, Soo Hak Sung,
Yaekwon Sohn, Jung Hwan Song, Yongjin Yeom, E-Joong Yoon,
Sangjin Lee, Jaewon Lee, Seongtaek Chee, Daewan Han, and Jin
Hong. “New Block Cipher: ARIA”. In: ICISC 03: 6th International

Conference on Information Security and Cryptology. Ed. by Jong In
Lim and Dong Hoon Lee. Vol. 2971. Lecture Notes in Computer
Science. Springer, Heidelberg, Nov. 2004, pp. 432–445.

[KLL+14] Elif Bilge Kavun, Martin M. Lauridsen, Gregor Leander, Christian
Rechberger, Peter Schwabe, and Tolga Yalçın. Prøst v1.1. CAESAR
submission. June 2014. url: https://competitions.cr.yp.to/
round1/proestv11.pdf.

[KLSW17] Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich
Wiemer. “Shorter Linear Straight-Line Programs for MDS Ma-
trices”. In: IACR Transactions on Symmetric Cryptology 2017.4 (2017),

261

https://doi.org/10.1007/978-3-319-66787-4_30
https://doi.org/10.1007/978-3-540-30564-4_8
https://doi.org/10.1007/978-3-540-30564-4_8
https://doi.org/10.1016/j.ins.2012.02.030
https://doi.org/10.1016/j.ins.2012.02.030
https://doi.org/10.1007/978-3-642-23951-9_7
https://doi.org/10.1007/978-3-642-23951-9_7
https://doi.org/10.1007/3-540-48405-1_25
https://doi.org/10.1007/3-540-48405-1_25
https://competitions.cr.yp.to/round1/proestv11.pdf
https://competitions.cr.yp.to/round1/proestv11.pdf

Bibliography

pp. 188–211. issn: 2519-173X. doi: 10.13154/tosc.v2017.i4.188-
211.

[KN10] Dmitry Khovratovich and Ivica Nikolic. “Rotational Cryptanalysis
of ARX”. In: Fast Software Encryption – FSE 2010. Ed. by Seokhie
Hong and Tetsu Iwata. Vol. 6147. Lecture Notes in Computer
Science. Springer, Heidelberg, Feb. 2010, pp. 333–346. doi: 10.
1007/978-3-642-13858-4_19.

[Knu95] Lars R. Knudsen. “Truncated and Higher Order Differentials”. In:
Fast Software Encryption – FSE’94. Ed. by Bart Preneel. Vol. 1008.
Lecture Notes in Computer Science. Springer, Heidelberg, Dec.
1995, pp. 196–211. doi: 10.1007/3-540-60590-8_16.

[KO63] Anatolii Karatsuba and Yuri Ofman. “Multiplication of multidigit
numbers on automata”. In: Soviet Physics Doklady 7 (1963). Trans-
lated from Doklady Akademii Nauk SSSR, Vol. 145, No. 2, pp.
293–294, July 1962, pp. 595–596.

[Koc96] Paul C. Kocher. “Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems”. In: Advances in Cryptology

– CRYPTO’96. Ed. by Neal Koblitz. Vol. 1109. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 1996, pp. 104–113.
doi: 10.1007/3-540-68697-5_9.

[Kön08] Robert Könighofer. “A Fast and Cache-Timing Resistant Imple-
mentation of the AES”. In: Topics in Cryptology – CT-RSA 2008.
Ed. by Tal Malkin. Vol. 4964. Lecture Notes in Computer Science.
Springer, Heidelberg, Apr. 2008, pp. 187–202. doi: 10.1007/978-
3-540-79263-5_12.

[KPPY14] Khoongming Khoo, Thomas Peyrin, Axel York Poschmann, and
Huihui Yap. “FOAM: Searching for Hardware-Optimal SPN Struc-
tures and Components with a Fair Comparison”. In: Cryptographic

Hardware and Embedded Systems – CHES 2014. Ed. by Lejla Batina and
Matthew Robshaw. Vol. 8731. Lecture Notes in Computer Science.
Springer, Heidelberg, Sept. 2014, pp. 433–450. doi: 10.1007/978-
3-662-44709-3_24.

[KRS19] Matthias J. Kannwischer, Joost Rĳneveld, and Peter Schwabe.
“Faster Multiplication in Z2𝑚 [𝑥] on Cortex-M4 to Speed up NIST
PQC Candidates”. In: ACNS 19: 17th International Conference on

Applied Cryptography and Network Security. Ed. by Robert H. Deng,
Valérie Gauthier-Umaña, Martín Ochoa, and Moti Yung. Vol. 11464.

262

https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.13154/tosc.v2017.i4.188-211
https://doi.org/10.1007/978-3-642-13858-4_19
https://doi.org/10.1007/978-3-642-13858-4_19
https://doi.org/10.1007/3-540-60590-8_16
https://doi.org/10.1007/3-540-68697-5_9
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-540-79263-5_12
https://doi.org/10.1007/978-3-662-44709-3_24
https://doi.org/10.1007/978-3-662-44709-3_24

Bibliography

Lecture Notes in Computer Science. Springer, Heidelberg, June
2019, pp. 281–301. doi: 10.1007/978-3-030-21568-2_14.

[KRSS19] Matthias J. Kannwischer, Joost Rĳneveld, Peter Schwabe, and Ko
Stoffelen. “pqm4: Testing and Benchmarking NIST PQC on ARM
Cortex-M4”. In: Second NIST PQC Standardization Conference. 2019.

[KS09] Emilia Käsper and Peter Schwabe. “Faster and Timing-Attack
Resistant AES-GCM”. In: Cryptographic Hardware and Embedded

Systems – CHES 2009. Ed. by Christophe Clavier and Kris Gaj.
Vol. 5747. Lecture Notes in Computer Science. Springer, Heidelberg,
Sept. 2009, pp. 1–17. doi: 10.1007/978-3-642-04138-9_1.

[LAAZ11] Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhza-
imi, and Erik Zenner. “A Cryptanalysis of PRINTcipher: The
Invariant Subspace Attack”. In: Advances in Cryptology – CRYPTO

2011. Ed. by Phillip Rogaway. Vol. 6841. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Aug. 2011, pp. 206–221. doi:
10.1007/978-3-642-22792-9_12.

[LCM+16] Adam Langley, Wan-Teh Chang, Nikos Mavrogiannopoulos, Joachim
Strombergson, and Simon Josefsson. RFC 7905: ChaCha20-Poly1305

Cipher Suites for Transport Layer Security (TLS). Internet Engineering
Task Force. June 2016. url: https://tools.ietf.org/html/
rfc7905.

[LF04] Jérôme Lacan and Jérôme Fimes. “Systematic MDS erasure codes
based on Vandermonde matrices”. In: IEEE Communications Letters

8.9 (2004), pp. 570–572. doi: 10.1109/LCOMM.2004.833807.
[LLM16] David C. Lay, Steven R. Lay, and Judi J. McDonald. Linear Algebra

and Its Applications. 5th ed. Pearson, 2016. isbn: 978-0-321-98238-4.
[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. EBL-Schweitzer.

Cambridge University Press, 1997. isbn: 9780521392310.
[LP07] Gregor Leander and Axel Poschmann. “On the Classification of

4 Bit S-Boxes”. In: Arithmetic of Finite Fields. Ed. by Claude Carlet
and Berk Sunar. Vol. 4547. Lecture Notes in Computer Science.
Springer, Heidelberg, 2007, pp. 159–176. doi: 10.1007/978-3-540-
73074-3_13.

263

https://doi.org/10.1007/978-3-030-21568-2_14
https://doi.org/10.1007/978-3-642-04138-9_1
https://doi.org/10.1007/978-3-642-22792-9_12
https://tools.ietf.org/html/rfc7905
https://tools.ietf.org/html/rfc7905
https://doi.org/10.1109/LCOMM.2004.833807
https://doi.org/10.1007/978-3-540-73074-3_13
https://doi.org/10.1007/978-3-540-73074-3_13

Bibliography

[LS16] Meicheng Liu and Siang Meng Sim. “Lightweight MDS Gen-
eralized Circulant Matrices”. In: Fast Software Encryption – FSE

2016. Ed. by Thomas Peyrin. Vol. 9783. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Mar. 2016, pp. 101–120. doi:
10.1007/978-3-662-52993-5_6.

[LW16] Yongqiang Li and Mingsheng Wang. “On the Construction of
Lightweight Circulant Involutory MDS Matrices”. In: Fast Software

Encryption – FSE 2016. Ed. by Thomas Peyrin. Vol. 9783. Lec-
ture Notes in Computer Science. Springer, Heidelberg, Mar. 2016,
pp. 121–139. doi: 10.1007/978-3-662-52993-5_7.

[LW17] Chaoyun Li and Qingju Wang. “Design of Lightweight Linear
Diffusion Layers from Near-MDS Matrices”. In: IACR Transactions

on Symmetric Cryptology 2017.1 (2017), pp. 129–155. issn: 2519-173X.
doi: 10.13154/tosc.v2017.i1.129-155.

[Mat06] Mitsuru Matsui. “How Far Can We Go on the x64 Processors?” In:
Fast Software Encryption – FSE 2006. Ed. by Matthew J. B. Robshaw.
Vol. 4047. Lecture Notes in Computer Science. Springer, Heidelberg,
Mar. 2006, pp. 341–358. doi: 10.1007/11799313_22.

[Mat94] Mitsuru Matsui. “Linear Cryptanalysis Method for DES Cipher”.
In: Advances in Cryptology – EUROCRYPT’93. Ed. by Tor Helleseth.
Vol. 765. Lecture Notes in Computer Science. Springer, Heidelberg,
May 1994, pp. 386–397. doi: 10.1007/3-540-48285-7_33.

[Max19] Alexander Maximov. AES MixColumn with 92 XOR gates. Cryptol-
ogy ePrint Archive, Report 2019/833. 2019. url: https://eprint.
iacr.org/2019/833.

[MB08] Leonardo de Moura and Nikolaj Bjørner. “Z3: An Efficient SMT
Solver”. In: Tools and Algorithms for the Construction and Analysis of

Systems – TACAS 2008. Ed. by C. R. Ramakrishnan and Jakob Rehof.
Vol. 4963. Lecture Notes in Computer Science. Springer, Heidelberg,
2008, pp. 337–340. doi: 10.1007/978-3-540-78800-3_24.

[MDA17] Silvia Mella, Joan Daemen, and Gilles Van Assche. “New tech-
niques for trail bounds and application to differential trails in Kec-
cak”. In: IACR Transactions on Symmetric Cryptology 2017.1 (2017),
pp. 329–357. issn: 2519-173X. doi: 10.13154/tosc.v2017.i1.329-
357.

264

https://doi.org/10.1007/978-3-662-52993-5_6
https://doi.org/10.1007/978-3-662-52993-5_7
https://doi.org/10.13154/tosc.v2017.i1.129-155
https://doi.org/10.1007/11799313_22
https://doi.org/10.1007/3-540-48285-7_33
https://eprint.iacr.org/2019/833
https://eprint.iacr.org/2019/833
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.13154/tosc.v2017.i1.329-357
https://doi.org/10.13154/tosc.v2017.i1.329-357

Bibliography

[ME19] Alexander Maximov and Patrik Ekdahl. “New Circuit Minimiza-
tion Techniques for Smaller and Faster AES SBoxes”. In: IACR

Transactions on Cryptographic Hardware and Embedded Systems 2019.4
(2019). https://tches.iacr.org/index.php/TCHES/article/
view/8346, pp. 91–125. issn: 2569-2925. doi: 10.13154/tches.
v2019.i4.91-125.

[Men16] Bart Mennink. “XPX: Generalized Tweakable Even-Mansour with
Improved Security Guarantees”. In: Advances in Cryptology – CRYPTO

2016, Part I. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9814.
Lecture Notes in Computer Science. Springer, Heidelberg, Aug.
2016, pp. 64–94. doi: 10.1007/978-3-662-53018-4_3.

[MGH+14] Pawel Morawiecki, Kris Gaj, Ekawat Homsirikamol, Krystian Ma-
tusiewicz, Josef Pieprzyk, Marcin Rogawski, Marian Srebrny, and
Marcin Wójcik. “ICEPOLE: High-Speed, Hardware-Oriented Au-
thenticated Encryption”. In: Cryptographic Hardware and Embedded

Systems – CHES 2014. Ed. by Lejla Batina and Matthew Robshaw.
Vol. 8731. Lecture Notes in Computer Science. Springer, Heidelberg,
Sept. 2014, pp. 392–413. doi: 10.1007/978-3-662-44709-3_22.

[MN07] Mitsuru Matsui and Junko Nakajima. “On the Power of Bitslice Im-
plementation on Intel Core2 Processor”. In: Cryptographic Hardware

and Embedded Systems – CHES 2007. Ed. by Pascal Paillier and In-
grid Verbauwhede. Vol. 4727. Lecture Notes in Computer Science.
Springer, Heidelberg, Sept. 2007, pp. 121–134. doi: 10.1007/978-
3-540-74735-2_9.

[Mou15] Theodosis Mourouzis. “Optimizations in Algebraic and Differ-
ential Cryptanalysis”. PhD thesis. University College London,
2015.

[MP13] Nicky Mouha and Bart Preneel. Towards Finding Optimal Differential

Characteristics for ARX: Application to Salsa20. Cryptology ePrint
Archive, Report 2013/328. 2013. url: https://eprint.iacr.org/
2013/328.

[MPC00] Lauren May, Lyta Penna, and Andrew J. Clark. “An Implemen-
tation of Bitsliced DES on the Pentium MMXTM Processor”. In:
ACISP 00: 5th Australasian Conference on Information Security and Pri-

vacy. Ed. by Ed Dawson, Andrew Clark, and Colin Boyd. Vol. 1841.
Lecture Notes in Computer Science. Springer, Heidelberg, July
2000, pp. 112–122. doi: 10.1007/10718964_10.

265

https://tches.iacr.org/index.php/TCHES/article/view/8346
https://tches.iacr.org/index.php/TCHES/article/view/8346
https://doi.org/10.13154/tches.v2019.i4.91-125
https://doi.org/10.13154/tches.v2019.i4.91-125
https://doi.org/10.1007/978-3-662-53018-4_3
https://doi.org/10.1007/978-3-662-44709-3_22
https://doi.org/10.1007/978-3-540-74735-2_9
https://doi.org/10.1007/978-3-540-74735-2_9
https://eprint.iacr.org/2013/328
https://eprint.iacr.org/2013/328
https://doi.org/10.1007/10718964_10

Bibliography

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane.
The theory of Error-Correcting Codes. North-Holland Publishing
Company, 1977.

[NIS15a] NIST. Secure Hash Standard (SHS). FIPS 180-4. Aug. 2015. doi:
10.6028/NIST.FIPS.180-4.

[NIS15b] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-

Output Functions. FIPS 202. Aug. 2015. doi: 10.6028/NIST.FIPS.
202.

[NL18] Yoav Nir and Adam Langley. RFC 8439: ChaCha20 and Poly1305

for IETF Protocols. Internet Research Task Force. June 2018. url:
https://tools.ietf.org/html/rfc8439.

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rĳmen. “Thresh-
old Implementations Against Side-Channel Attacks and Glitches”.
In: ICICS 06: 8th International Conference on Information and Commu-

nication Security. Ed. by Peng Ning, Sihan Qing, and Ninghui Li.
Vol. 4307. Lecture Notes in Computer Science. Springer, Heidelberg,
Dec. 2006, pp. 529–545.

[NRS11] Svetla Nikova, Vincent Rĳmen, and Martin Schläffer. “Secure
Hardware Implementation of Nonlinear Functions in the Presence
of Glitches”. In: Journal of Cryptology 24.2 (Apr. 2011), pp. 292–321.
doi: 10.1007/s00145-010-9085-7.

[OBSC10] Dag Arne Osvik, Joppe W. Bos, Deian Stefan, and David Canright.
“Fast Software AES Encryption”. In: Fast Software Encryption – FSE

2010. Ed. by Seokhie Hong and Tetsu Iwata. Vol. 6147. Lecture
Notes in Computer Science. Springer, Heidelberg, Feb. 2010, pp. 75–
93. doi: 10.1007/978-3-642-13858-4_5.

[OST06] Dag Arne Osvik, Adi Shamir, and Eran Tromer. “Cache Attacks
and Countermeasures: The Case of AES”. In: Topics in Cryptology –

CT-RSA 2006. Ed. by David Pointcheval. Vol. 3860. Lecture Notes
in Computer Science. Springer, Heidelberg, Feb. 2006, pp. 1–20.
doi: 10.1007/11605805_1.

[Paa97] Christof Paar. “Optimized Arithmetic for Reed-Solomon Encoders”.
In: IEEE International Symposium on Information Theory. IEEE, June
1997. isbn: 0-7803-3956-8. doi: 10.1109/ISIT.1997.613165.

266

https://doi.org/10.6028/NIST.FIPS.180-4
https://doi.org/10.6028/NIST.FIPS.202
https://doi.org/10.6028/NIST.FIPS.202
https://tools.ietf.org/html/rfc8439
https://doi.org/10.1007/s00145-010-9085-7
https://doi.org/10.1007/978-3-642-13858-4_5
https://doi.org/10.1007/11605805_1
https://doi.org/10.1109/ISIT.1997.613165

Bibliography

[PdL09] Jing Pan, Jerry den Hartog, and Jiqiang Lu. “You Cannot Hide
behind the Mask: Power Analysis on a Provably Secure S-Box Imple-
mentation”. In: WISA 09: 10th International Workshop on Information

Security Applications. Ed. by Heung Youl Youm and Moti Yung.
Vol. 5932. Lecture Notes in Computer Science. Springer, Heidelberg,
Aug. 2009, pp. 178–192. doi: 10.1007/978-3-642-10838-9_14.

[PL18] Jin Hyung Park and Dong Hoon Lee. “FACE: Fast AES CTR mode
Encryption Techniques based on the Reuse of Repetitive Data”.
In: IACR Transactions on Cryptographic Hardware and Embedded

Systems 2018.3 (2018). https://tches.iacr.org/index.php/
TCHES/article/view/7283, pp. 469–499. issn: 2569-2925. doi:
10.13154/tches.v2018.i3.469-499.

[PR13] Emmanuel Prouff and Matthieu Rivain. “Masking against Side-
Channel Attacks: A Formal Security Proof”. In: Advances in Cryptol-

ogy – EUROCRYPT 2013. Ed. by Thomas Johansson and Phong Q.
Nguyen. Vol. 7881. Lecture Notes in Computer Science. Springer,
Heidelberg, May 2013, pp. 142–159. doi: 10.1007/978-3-642-
38348-9_9.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. “Mind the Gap:
Towards Secure 1st-Order Masking in Software”. In: COSADE 2017:

8th International Workshop on Constructive Side-Channel Analysis and

Secure Design. Ed. by Sylvain Guilley. Vol. 10348. Lecture Notes in
Computer Science. Springer, Heidelberg, Apr. 2017, pp. 282–297.
doi: 10.1007/978-3-319-64647-3_17.

[QS01] Jean-Jacques Quisquater and David Samyde. “ElectroMagnetic
Analysis (EMA): Measures and Counter-Measures for Smart
Cards”. In: Smart Card Programming and Security – E-smart 2001.
Ed. by Isabelle Attali and Thomas Jensen. Vol. 2140. Lecture Notes
in Computer Science. Springer, Heidelberg, Sept. 2001, pp. 200–210.
doi: 10.1007/3-540-45418-7_17.

[RBG08] Vincent Rĳmen, Paulo S. L. M. Barreto, and Décio Luiz Gaz-
zoni Filho. “Rotation symmetry in algebraically generated crypto-
graphic substitution tables”. In: Information Processing Letters 106.6
(June 2008), pp. 246–250. doi: 10.1016/j.ipl.2007.09.012.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs,
and Ingrid Verbauwhede. “Consolidating Masking Schemes”. In:
Advances in Cryptology – CRYPTO 2015, Part I. Ed. by Rosario

267

https://doi.org/10.1007/978-3-642-10838-9_14
https://tches.iacr.org/index.php/TCHES/article/view/7283
https://tches.iacr.org/index.php/TCHES/article/view/7283
https://doi.org/10.13154/tches.v2018.i3.469-499
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-642-38348-9_9
https://doi.org/10.1007/978-3-319-64647-3_17
https://doi.org/10.1007/3-540-45418-7_17
https://doi.org/10.1016/j.ipl.2007.09.012

Bibliography

Gennaro and Matthew J. B. Robshaw. Vol. 9215. Lecture Notes in
Computer Science. Springer, Heidelberg, Aug. 2015, pp. 764–783.
doi: 10.1007/978-3-662-47989-6_37.

[RDP+96] Vincent Rĳmen, Joan Daemen, Bart Preneel, Anton Bossalaers, and
Erik De Win. “The Cipher SHARK”. In: Fast Software Encryption

– FSE’96. Ed. by Dieter Gollmann. Vol. 1039. Lecture Notes in
Computer Science. Springer, Heidelberg, Feb. 1996, pp. 99–111.
doi: 10.1007/3-540-60865-6_47.

[RIS19] RISC-V Foundation. The RISC-V Instruction Set Manual, Volume

1: User-Level ISA, Document Version 20191213. Ed. by Andrew
Waterman and Krste Asanović. Version 20191213. Dec. 2019. url:
https://content.riscv.org/wp-content/uploads/2019/12/
riscv-spec-20191213.pdf.

[RP10] Matthieu Rivain and Emmanuel Prouff. “Provably Secure Higher-
Order Masking of AES”. In: Cryptographic Hardware and Embedded

Systems – CHES 2010. Ed. by Stefan Mangard and François-Xavier
Standaert. Vol. 6225. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2010, pp. 413–427. doi: 10.1007/978-3-642-
15031-9_28.

[RTA18] Arash Reyhani-Masoleh, Mostafa Taha, and Doaa Ashmawy.
“Smashing the Implementation Records of AES S-box”. In: IACR

Transactions on Cryptographic Hardware and Embedded Systems 2018.2
(2018). https://tches.iacr.org/index.php/TCHES/article/
view/884, pp. 298–336. issn: 2569-2925. doi: 10.13154/tches.
v2018.i2.298-336.

[SD18] Ko Stoffelen and Joan Daemen. “Column Parity Mixers”. In: IACR

Transactions on Symmetric Cryptology 2018.1 (2018), pp. 126–159.
issn: 2519-173X. doi: 10.13154/tosc.v2018.i1.126-159.

[SDMO12] Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala, and Behnaz
Omoomi. “On construction of involutory MDS matrices from Van-
dermonde Matrices in GF(2𝑞)”. In: Designs, Codes and Cryptography

64.3 (Sept. 2012), pp. 287–308. issn: 1573-7586. doi: 10.1007/
s10623-011-9578-x.

[Seg55] Beniamino Segre. “Curve razionali normali e 𝑘-archi negli spazi
finiti”. In: Annali di Matematica Pura ed Applicata 39.1 (Dec. 1955),
pp. 357–379. issn: 1618-1891. doi: 10.1007/BF02410779.

268

https://doi.org/10.1007/978-3-662-47989-6_37
https://doi.org/10.1007/3-540-60865-6_47
https://content.riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://content.riscv.org/wp-content/uploads/2019/12/riscv-spec-20191213.pdf
https://doi.org/10.1007/978-3-642-15031-9_28
https://doi.org/10.1007/978-3-642-15031-9_28
https://tches.iacr.org/index.php/TCHES/article/view/884
https://tches.iacr.org/index.php/TCHES/article/view/884
https://doi.org/10.13154/tches.v2018.i2.298-336
https://doi.org/10.13154/tches.v2018.i2.298-336
https://doi.org/10.13154/tosc.v2018.i1.126-159
https://doi.org/10.1007/s10623-011-9578-x
https://doi.org/10.1007/s10623-011-9578-x
https://doi.org/10.1007/BF02410779

Bibliography

[Šid67] Zbyněk Šidák. “Rectangular Confidence Regions for the Means
of Multivariate Normal Distributions”. In: Journal of the American

Statistical Association 62.318 (1967), pp. 626–633. issn: 01621459. doi:
10.2307/2283989.

[SiF17] SiFive, Inc. SiFive FE310-G000 Manual, v2p3. Version v2p3. Oct.
2017. url: https://sifive.cdn.prismic.io/sifive/4d063bf8-
3ae6-4db6-9843-ee9076ebadf7_fe310-g000.pdf.

[SiF18] SiFive, Inc. SiFive E31 Core Complex Manual, v2p0. Version v2p0. June
2018. url: https://sifive.cdn.prismic.io/sifive/b06a2d11-
19ea- 44ec- bf53- 3e4c497c7997_sifive- e31- manual- v2p0.
pdf.

[SIH+11] Kyoji Shibutani, Takanori Isobe, Harunaga Hiwatari, Atsushi
Mitsuda, Toru Akishita, and Taizo Shirai. “Piccolo: An Ultra-
Lightweight Blockcipher”. In: Cryptographic Hardware and Embedded

Systems – CHES 2011. Ed. by Bart Preneel and Tsuyoshi Takagi.
Vol. 6917. Lecture Notes in Computer Science. Springer, Heidelberg,
Sept. 2011, pp. 342–357. doi: 10.1007/978-3-642-23951-9_23.

[SKOP15] Siang Meng Sim, Khoongming Khoo, Frédérique E. Oggier, and
Thomas Peyrin. “Lightweight MDS Involution Matrices”. In: Fast

Software Encryption – FSE 2015. Ed. by Gregor Leander. Vol. 9054.
Lecture Notes in Computer Science. Springer, Heidelberg, Mar.
2015, pp. 471–493. doi: 10.1007/978-3-662-48116-5_23.

[SKW+98] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris
Hall, and Niels Ferguson. Twofish: A 128-Bit Block Cipher. 1998.

[SLLH18] Hwajeong Seo, Zhe Liu, Patrick Longa, and Zhi Hu. “SIDH on
ARM: Faster Modular Multiplications for Faster Post-Quantum
Supersingular Isogeny Key Exchange”. In: IACR Transactions on

Cryptographic Hardware and Embedded Systems 2018.3 (2018), pp. 1–20.
issn: 2569-2925. doi: 10.13154/tches.v2018.i3.1-20. url: https:
//tches.iacr.org/index.php/TCHES/article/view/7266.

[SM15] Tobias Schneider and Amir Moradi. “Leakage Assessment Method-
ology - A Clear Roadmap for Side-Channel Evaluations”. In: Cryp-

tographic Hardware and Embedded Systems – CHES 2015. Ed. by Tim
Güneysu and Helena Handschuh. Vol. 9293. Lecture Notes in
Computer Science. Springer, Heidelberg, Sept. 2015, pp. 495–513.
doi: 10.1007/978-3-662-48324-4_25.

269

https://doi.org/10.2307/2283989
https://sifive.cdn.prismic.io/sifive/4d063bf8-3ae6-4db6-9843-ee9076ebadf7_fe310-g000.pdf
https://sifive.cdn.prismic.io/sifive/4d063bf8-3ae6-4db6-9843-ee9076ebadf7_fe310-g000.pdf
https://sifive.cdn.prismic.io/sifive/b06a2d11-19ea-44ec-bf53-3e4c497c7997_sifive-e31-manual-v2p0.pdf
https://sifive.cdn.prismic.io/sifive/b06a2d11-19ea-44ec-bf53-3e4c497c7997_sifive-e31-manual-v2p0.pdf
https://sifive.cdn.prismic.io/sifive/b06a2d11-19ea-44ec-bf53-3e4c497c7997_sifive-e31-manual-v2p0.pdf
https://doi.org/10.1007/978-3-642-23951-9_23
https://doi.org/10.1007/978-3-662-48116-5_23
https://doi.org/10.13154/tches.v2018.i3.1-20
https://tches.iacr.org/index.php/TCHES/article/view/7266
https://tches.iacr.org/index.php/TCHES/article/view/7266
https://doi.org/10.1007/978-3-662-48324-4_25

Bibliography

[SMSG16] Tobias Schneider, Amir Moradi, François-Xavier Standaert, and
Tim Güneysu. “Bridging the Gap: Advanced Tools for Side-Channel
Leakage Estimation Beyond Gaussian Templates and Histograms”.
In: SAC 2016: 23rd Annual International Workshop on Selected Areas

in Cryptography. Ed. by Roberto Avanzi and Howard M. Heys.
Vol. 10532. Lecture Notes in Computer Science. Springer, Heidel-
berg, Aug. 2016, pp. 58–78. doi: 10.1007/978-3-319-69453-5_4.

[SMTM01] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seĳi Munetoh.
“A Compact Rĳndael Hardware Architecture with S-Box Optimiza-
tion”. In: Advances in Cryptology – ASIACRYPT 2001. Ed. by Colin
Boyd. Vol. 2248. Lecture Notes in Computer Science. Springer, Hei-
delberg, Dec. 2001, pp. 239–254. doi: 10.1007/3-540-45682-1_15.

[SMY09] François-Xavier Standaert, Tal Malkin, and Moti Yung. “A Uni-
fied Framework for the Analysis of Side-Channel Key Recovery
Attacks”. In: Advances in Cryptology – EUROCRYPT 2009. Ed. by An-
toine Joux. Vol. 5479. Lecture Notes in Computer Science. Springer,
Heidelberg, Apr. 2009, pp. 443–461. doi: 10.1007/978-3-642-
01001-9_26.

[SS16a] Sumanta Sarkar and Siang Meng Sim. “A Deeper Understanding
of the XOR Count Distribution in the Context of Lightweight
Cryptography”. In: AFRICACRYPT 16: 8th International Conference

on Cryptology in Africa. Ed. by David Pointcheval, Abderrahmane
Nitaj, and Tajjeeddine Rachidi. Vol. 9646. Lecture Notes in Com-
puter Science. Springer, Heidelberg, Apr. 2016, pp. 167–182. doi:
10.1007/978-3-319-31517-1_9.

[SS16b] Sumanta Sarkar and Habeeb Syed. “Lightweight Diffusion Layer:
Importance of Toeplitz Matrices”. In: IACR Transactions on Sym-

metric Cryptology 2016.1 (2016), pp. 95–113. issn: 2519-173X. doi:
10.13154/tosc.v2016.i1.95-113. url: https://tosc.iacr.
org/index.php/ToSC/article/view/537.

[SS16c] Peter Schwabe and Ko Stoffelen. “All the AES You Need on Cortex-
M3 and M4”. In: SAC 2016: 23rd Annual International Workshop on

Selected Areas in Cryptography. Ed. by Roberto Avanzi and Howard
M. Heys. Vol. 10532. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2016, pp. 180–194. doi: 10.1007/978-3-319-
69453-5_10.

270

https://doi.org/10.1007/978-3-319-69453-5_4
https://doi.org/10.1007/3-540-45682-1_15
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-642-01001-9_26
https://doi.org/10.1007/978-3-319-31517-1_9
https://doi.org/10.13154/tosc.v2016.i1.95-113
https://tosc.iacr.org/index.php/ToSC/article/view/537
https://tosc.iacr.org/index.php/ToSC/article/view/537
https://doi.org/10.1007/978-3-319-69453-5_10
https://doi.org/10.1007/978-3-319-69453-5_10

Bibliography

[SS17] Sumanta Sarkar and Habeeb Syed. “Analysis of Toeplitz MDS
Matrices”. In: ACISP 17: 22nd Australasian Conference on Information

Security and Privacy, Part II. Ed. by Josef Pieprzyk and Suriadi
Suriadi. Vol. 10343. Lecture Notes in Computer Science. Springer,
Heidelberg, July 2017, pp. 3–18. doi: 10.1007/978-3-319-59870-
3_1.

[SSA+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and
Tetsu Iwata. “The 128-Bit Blockcipher CLEFIA (Extended Ab-
stract)”. In: Fast Software Encryption – FSE 2007. Ed. by Alex
Biryukov. Vol. 4593. Lecture Notes in Computer Science. Springer,
Heidelberg, Mar. 2007, pp. 181–195. doi: 10.1007/978-3-540-
74619-5_12.

[STA+15] Yu Sasaki, Yosuke Todo, Kazumaro Aoki, Yusuke Naito, Takeshi
Sugawara, Yumiko Murakami, Mitsuru Matsui, and Shoichi Hirose.
Minalpher v1.1. CAESAR submission. Aug. 2015. url: https://
competitions.cr.yp.to/round2/minalpherv11.pdf.

[STM19] STMicroelectronics. RM0090 reference manual. Feb. 2019. url: https:
//www.st.com/resource/en/reference_manual/dm00031020-
stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-
advanced-armbased-32bit-mcus-stmicroelectronics.pdf.

[STM20] STMicroelectronics. RM0038 reference manual. Jan. 2020. url: https:
//www.st.com/resource/en/reference_manual/cd00240193-
stm32l100xx- stm32l151xx- stm32l152xx- and- stm32l162xx-
advanced-armbased-32bit-mcus-stmicroelectronics.pdf.

[Sto15] Ko Stoffelen. “Intrinsic Side-Channel Analysis Resistance and
Efficient Masking”. MA thesis. Radboud University, Aug. 2015.

[Sto16a] Ko Stoffelen. “Instruction Scheduling and Register Allocation on
ARM Cortex-M”. In: Software performance enhancement for encryption

and decryption, and benchmarking – SPEED-B. Oct. 2016. url: https:
//ccccspeed.win.tue.nl/papers/armscheduler-final.pdf.

[Sto16b] Ko Stoffelen. “Optimizing S-Box Implementations for Several Crite-
ria Using SAT Solvers”. In: Fast Software Encryption – FSE 2016. Ed.
by Thomas Peyrin. Vol. 9783. Lecture Notes in Computer Science.
Springer, Heidelberg, Mar. 2016, pp. 140–160. doi: 10.1007/978-
3-662-52993-5_8.

271

https://doi.org/10.1007/978-3-319-59870-3_1
https://doi.org/10.1007/978-3-319-59870-3_1
https://doi.org/10.1007/978-3-540-74619-5_12
https://doi.org/10.1007/978-3-540-74619-5_12
https://competitions.cr.yp.to/round2/minalpherv11.pdf
https://competitions.cr.yp.to/round2/minalpherv11.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405415-stm32f407417-stm32f427437-and-stm32f429439-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00240193-stm32l100xx-stm32l151xx-stm32l152xx-and-stm32l162xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://ccccspeed.win.tue.nl/papers/armscheduler-final.pdf
https://ccccspeed.win.tue.nl/papers/armscheduler-final.pdf
https://doi.org/10.1007/978-3-662-52993-5_8
https://doi.org/10.1007/978-3-662-52993-5_8

Bibliography

[Sto19] Ko Stoffelen. “Efficient Cryptography on the RISC-V Architecture”.
In: LATINCRYPT 2019: 6th International Conference on Cryptology

and Information Security in Latin America. Ed. by Peter Schwabe and
Nicolas Thériault. Vol. 11774. Lecture Notes in Computer Science.
Springer, Heidelberg, Sept. 2019, pp. 323–340. doi: 10.1007/978-
3-030-30530-7_16.

[Sug18] Takeshi Sugawara. “3-Share Threshold Implementation of AES
S-box without Fresh Randomness”. In: IACR Transactions on Cryp-

tographic Hardware and Embedded Systems 2019.1 (2018). https:
//tches.iacr.org/index.php/TCHES/article/view/7336,
pp. 123–145. issn: 2569-2925. doi: 10.13154/tches.v2019.i1.123-
145.

[SV93] Mark Shand and Jean Vuillemin. “Fast implementations of RSA
cryptography”. In: Proceedings of IEEE 11th Symposium on Computer

Arithmetic. June 1993, pp. 252–259. doi: 10.1109/ARITH.1993.
378085.

[SVO+10] François-Xavier Standaert, Nicolas Veyrat-Charvillon, Elisabeth
Oswald, Benedikt Gierlichs, Marcel Medwed, Markus Kasper, and
Stefan Mangard. “The World Is Not Enough: Another Look on
Second-Order DPA”. In: Advances in Cryptology – ASIACRYPT 2010.
Ed. by Masayuki Abe. Vol. 6477. Lecture Notes in Computer Science.
Springer, Heidelberg, Dec. 2010, pp. 112–129. doi: 10.1007/978-
3-642-17373-8_7.

[TLS16] Yosuke Todo, Gregor Leander, and Yu Sasaki. “Nonlinear Invari-
ant Attack - Practical Attack on Full SCREAM, iSCREAM, and
Midori64”. In: Advances in Cryptology – ASIACRYPT 2016, Part II.
Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10032. Lecture
Notes in Computer Science. Springer, Heidelberg, Dec. 2016, pp. 3–
33. doi: 10.1007/978-3-662-53890-6_1.

[TOS10] Eran Tromer, Dag Arne Osvik, and Adi Shamir. “Efficient Cache
Attacks on AES, and Countermeasures”. In: Journal of Cryptology

23.1 (Jan. 2010), pp. 62–74. doi: 10.1007/s00145-009-9049-y.
[Tri03] Elena Trichina. Combinational Logic Design for AES SubByte Transfor-

mation on Masked Data. Cryptology ePrint Archive, Report 2003/236.
2003. url: https://eprint.iacr.org/2003/236.

272

https://doi.org/10.1007/978-3-030-30530-7_16
https://doi.org/10.1007/978-3-030-30530-7_16
https://tches.iacr.org/index.php/TCHES/article/view/7336
https://tches.iacr.org/index.php/TCHES/article/view/7336
https://doi.org/10.13154/tches.v2019.i1.123-145
https://doi.org/10.13154/tches.v2019.i1.123-145
https://doi.org/10.1109/ARITH.1993.378085
https://doi.org/10.1109/ARITH.1993.378085
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-642-17373-8_7
https://doi.org/10.1007/978-3-662-53890-6_1
https://doi.org/10.1007/s00145-009-9049-y
https://eprint.iacr.org/2003/236

Bibliography

[TW15] Biaoshuai Tao and Hongjun Wu. “Improving the Biclique Crypt-
analysis of AES”. In: ACISP 15: 20th Australasian Conference on

Information Security and Privacy. Ed. by Ernest Foo and Douglas
Stebila. Vol. 9144. Lecture Notes in Computer Science. Springer,
Heidelberg, June 2015, pp. 39–56. doi: 10.1007/978- 3- 319-
19962-7_3.

[VGS14] Nicolas Veyrat-Charvillon, Benoît Gérard, and François-Xavier
Standaert. “Soft Analytical Side-Channel Attacks”. In: Advances

in Cryptology – ASIACRYPT 2014, Part I. Ed. by Palash Sarkar
and Tetsu Iwata. Vol. 8873. Lecture Notes in Computer Science.
Springer, Heidelberg, Dec. 2014, pp. 282–296. doi: 10.1007/978-
3-662-45611-8_15.

[VSP17] Andrea Visconti, Chiara Valentina Schiavo, and René Peralta.
Improved upper bounds for the expected circuit complexity of dense

systems of linear equations over GF(2). Cryptology ePrint Archive,
Report 2017/194. 2017. url: https://eprint.iacr.org/2017/
194.

[VSP18] Andrea Visconti, Chiara Valentina Schiavo, and René Peralta.
“Improved upper bounds for the expected circuit complexity of
dense systems of linear equations over GF(2)”. In: Information

Processing Letters 137 (Sept. 2018), pp. 1–5. doi: 10.1016/j.ipl.
2018.04.010.

[vWB11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Bram Bakker.
“Improving Differential Power Analysis by Elastic Alignment”.
In: Topics in Cryptology – CT-RSA 2011. Ed. by Aggelos Kiayias.
Vol. 6558. Lecture Notes in Computer Science. Springer, Heidelberg,
Feb. 2011, pp. 104–119. doi: 10.1007/978-3-642-19074-2_8.

[War94] William P. Wardlaw. “Matrix Representation of Finite Fields”. In:
Mathematics Magazine 67.4 (1994), pp. 289–293. issn: 0025-570X.

[WFY+02] Dai Watanabe, Soichi Furuya, Hirotaka Yoshida, Kazuo Takaragi,
and Bart Preneel. “A New Keystream Generator MUGI”. In: Fast

Software Encryption – FSE 2002. Ed. by Joan Daemen and Vincent
Rĳmen. Vol. 2365. Lecture Notes in Computer Science. Springer,
Heidelberg, Feb. 2002, pp. 179–194. doi: 10.1007/3-540-45661-
9_14.

273

https://doi.org/10.1007/978-3-319-19962-7_3
https://doi.org/10.1007/978-3-319-19962-7_3
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://eprint.iacr.org/2017/194
https://eprint.iacr.org/2017/194
https://doi.org/10.1016/j.ipl.2018.04.010
https://doi.org/10.1016/j.ipl.2018.04.010
https://doi.org/10.1007/978-3-642-19074-2_8
https://doi.org/10.1007/3-540-45661-9_14
https://doi.org/10.1007/3-540-45661-9_14

Bibliography

[WJW+18] Wen Wang, Bernhard Jungk, Julian Wälde, Shuwen Deng, Naina
Gupta, Jakub Szefer, and Ruben Niederhagen. XMSS and Embedded

Systems – XMSS Hardware Accelerators for RISC-V. Cryptology
ePrint Archive, Report 2018/1225. 2018. url: https://eprint.
iacr.org/2018/1225.

[WM18a] Felix Wegener and Amir Moradi. “A First-Order SCA Resistant AES
Without Fresh Randomness”. In: COSADE 2018: 9th International

Workshop on Constructive Side-Channel Analysis and Secure Design. Ed.
by Junfeng Fan and Benedikt Gierlichs. Vol. 10815. Lecture Notes
in Computer Science. Springer, Heidelberg, Apr. 2018, pp. 245–262.
doi: 10.1007/978-3-319-89641-0_14.

[WM18b] Felix Wegener and Amir Moradi. A Note on Transitional Leakage

When Masking AES with Only Two Bits of Randomness. Cryptology
ePrint Archive, Report 2018/1117. 2018. url: https://eprint.
iacr.org/2018/1117.

[Wol] Clifford Wolf. Yosys Open SYnthesis Suite. url: http : / / www .
clifford.at/yosys/.

[WVGX15] Junwei Wang, Praveen Kumar Vadnala, Johann Großschädl, and
Qiuliang Xu. “Higher-Order Masking in Practice: A Vector Imple-
mentation of Masked AES for ARM NEON”. In: Topics in Cryptology

– CT-RSA 2015. Ed. by Kaisa Nyberg. Vol. 9048. Lecture Notes in
Computer Science. Springer, Heidelberg, Apr. 2015, pp. 181–198.
doi: 10.1007/978-3-319-16715-2_10.

[ZBL+14] Wentao Zhang, Zhenzhen Bao, Dongdai Lin, Vincent Rĳmen,
Bohan Yang, and Ingrid Verbauwhede. RECTANGLE: A Bit-slice

Lightweight Block Cipher Suitable for Multiple Platforms. Cryptology
ePrint Archive, Report 2014/084. 2014. url: https://eprint.
iacr.org/2014/084.

[ZDD+18] Liwei Zhang, A. Adam Ding, François Durvaux, François-Xavier
Standaert, and Yunsi Fei. “Towards Sound and Optimal Leakage
Detection Procedure (Extended Version)”. In: Smart Card Research

and Advanced Applications – CARDIS 2017. Ed. by Thomas Eisen-
barth and Yannick Teglia. Vol. 10728. Lecture Notes in Computer
Science. Springer, Heidelberg, Jan. 2018, pp. 105–122. isbn: 978-3-
319-75208-2. doi: 10.1007/978-3-319-75208-2_7.

274

https://eprint.iacr.org/2018/1225
https://eprint.iacr.org/2018/1225
https://doi.org/10.1007/978-3-319-89641-0_14
https://eprint.iacr.org/2018/1117
https://eprint.iacr.org/2018/1117
http://www.clifford.at/yosys/
http://www.clifford.at/yosys/
https://doi.org/10.1007/978-3-319-16715-2_10
https://eprint.iacr.org/2014/084
https://eprint.iacr.org/2014/084
https://doi.org/10.1007/978-3-319-75208-2_7

Bibliography

[ZWS17] Lĳing Zhou, Licheng Wang, and Yiru Sun. On the Construction of

Lightweight Orthogonal MDS Matrices. Cryptology ePrint Archive,
Report 2017/371. 2017. url: https://eprint.iacr.org/2017/
371.

[ZWW+14] Lei Zhang, Wenling Wu, Yanfeng Wang, Shengbao Wu, and Jian
Zhang. LAC: A Lightweight Authenticated Encryption Cipher. CAE-
SAR submission. Mar. 2014. url: https://competitions.cr.yp.
to/round1/lacv1.pdf.

[ZWZZ16] Ruoxin Zhao, Baofeng Wu, Rui Zhang, and Qian Zhang. Designing

Optimal Implementations of Linear Layers (Full Version). Cryptology
ePrint Archive, Report 2016/1118. 2016. url: https://eprint.
iacr.org/2016/1118.

275

https://eprint.iacr.org/2017/371
https://eprint.iacr.org/2017/371
https://competitions.cr.yp.to/round1/lacv1.pdf
https://competitions.cr.yp.to/round1/lacv1.pdf
https://eprint.iacr.org/2016/1118
https://eprint.iacr.org/2016/1118

Summary

This thesis contains contributions that optimize various aspects of the design,
implementation, and protection of symmetric cryptographic primitives. Chap-
ters 1 and 2 introduce the topic and provide the reader with some background.
The main body of this thesis is divided into three parts.

I Cryptographic Building Blocks

Chapter 3 is about how to optimize S-boxes, the nonlinear building block of
many symmetric ciphers. We define four optimization criteria and we provide
a method based on generic SAT solvers to automatically find efficient S-box
implementations for these criteria. This method also allows to prove statements
about the optimal number of operations. We then apply the method to the
S-boxes of the CAESAR candidates and find many efficient implementations.

Chapter 4 tackles the optimization of MDS matrices, a linear building block
of many symmetric ciphers. In the search for efficiently implementable MDS
matrices, researchers used an approach that we show only performs local
optimization. Existing methods to find shortest linear straight-line programs
can be used in the search for MDS matrices and outperform the approach that
only does local optimization. With these methods we study the XOR counts of
many MDS matrices used in ciphers and of a number of generic constructions.

Chapter 5 defines the column-parity mixer (CPM), a linear building block
for symmetric ciphers that can be used instead of an MDS matrix. We first
study its algebraic, diffusion, and mask propagation properties and show its
efficiency compared to other mixing layers. Then we outline a strategy on
how to incorporate a CPM in a larger design and exemplify this be with a new
permutation called Mixifer. We perform a security analysis of Mixifer and
showcase that the design leads to an efficient software implementation.

277

Summary

II Optimized Implementations

Chapter 6 is about optimized assembly implementations of AES for the ARM
Cortex-M3 and M4 that outperformed the then existing implementations. We
wrote a custom instruction scheduler and register allocator for minimizing load
instructions in SubBytes. Next to table-based implementations, we also show a
constant-time bitsliced implementation and a masked implementation with two
shares.

Chapter 7 deals with the RISC-V architecture and comes with optimized
assembly implementations of AES, ChaCha, and the Keccak- 𝑓 permutation. We
also study the performance of arbitrary-precision arithmetic for asymmetric
cryptography. Finally, we compare the relative performance of our implementa-
tions to those on the ARM Cortex-M4 and we discuss the impact of potential
ISA extensions.

III Side-Channel Countermeasures

Chapter 8 describes a method to speed up implementations of higher-order
masking by exploiting vector registers. We implement AES with 4 shares and
with 8 shares and we use the NEON unit of an ARM Cortex-A8 to efficiently
compute on the shares in parallel. We conclude with a security evaluation
against side-channel attacks.

Chapter 9 introduces a way to mask AES with only two random bits in total
by coming up with a new masked AND gate and by carefully reusing randomness.
We formally verify that this approach is (first-order) secure in the probing model.
We also implement it in assembly to show its efficiency on an ARM Cortex-M4
and we perform experiments to discuss its security.

278

Samenvatting

Dit proefschrift bevat bĳdragen die verschillende aspecten optimaliseren van het
ontwerp, de implementatie en de bescherming van symmetrische cryptografische
primitieven. Hoofdstuk 1 en 2 leiden het onderwerp in en geven de lezer enige
achtergrond. De kern van dit proefschrift is opgedeeld in drie delen.

I Cryptografische Bouwstenen

Hoofdstuk 3 gaat over optimalisatie van S-boxes, een niet-lineaire bouwsteen
van veel symmetrische vercĳferingen. We definiëren vier optimalisatiecriteria
en we geven een methode gebaseerd op generieke SAT-solvers om automatisch
efficiënte S-box-implementaties te vinden. Deze methode maakt het ook mogelĳk
om stellingen over het minimum te bewĳzen. We passen de methode toe op
S-boxes van CAESAR-kandidaten en vinden veel efficiënte implementaties.

Hoofdstuk 4 beschouwt optimalisatie van MDS-matrices, een lineaire bouw-
steen van veel symmetriche vercĳferingen. Voor het zoeken naar efficiënte
MDS-matrices gebruikten onderzoekers een methode waarvan wĳ aantonen
dat deze slechts aan lokale optimalisatie doet. Bestaande methoden om shortest

linear straight-line programs te vinden kunnen hiervoor ook gebruikt worden en
presteren beter. Met deze methoden bestuderen we het aantal XOR-operaties
benodigd voor veel MDS-matrices en ook een aantal generieke constructies.

Hoofdstuk 5 definieert de column-parity mixer (CPM), een lineaire bouwsteen
voor symmetrische vercĳferingen die in plaats van een MDS-matrix gebruikt
kan worden. We bestuderen o. a. algebraïsche en differentiële eigenschappen en
tonen aan hoe efficiënt het is vergeleken met andere typen mixlagen. Daarna
geven we een manier om een CPM in een ontwerp te gebruiken, wat resulteert
in een permutatie genaamd Mixifer. We voeren een veiligheidsanalyse uit en
laten zien dat het ontwerp leidt tot een efficiënte implementatie.

279

Samenvatting

II Geoptimaliseerde Implementaties

Hoofdstuk 6 gaat over geoptimaliseerde assembly-implementaties van AES voor
de ARM Cortex-M3 en M4 die sneller waren dan bestaande implementaties.
We schreven een eigen instructieplanner en registertoewĳzer om het aantal
load-instructies in SubBytes te minimaliseren. Naast implementaties gebaseerd
op tabellen laten we ook een bitsliced implementatie zien en een tot de eerste
orde gemaskeerde implementatie.

Hoofdstuk 7 beschouwt geoptimaliseerde assembly-implementaties van AES,
ChaCha en de Keccak- 𝑓 permutatie voor de RISC-V architectuur. We kĳken ook
naar de prestaties van willekeurige-precisie-rekenkunde voor asymmetrische
cryptografie. Ten slotte vergelĳken we de relatieve prestaties van onze imple-
mentaties met die op een ARM Cortex-M4 en bespreken we de impact van
mogelĳke instructiesetuitbreidingen.

III Maatregelen tegen Nevenkanaalaanvallen

Hoofdstuk 8 beschrĳft een methode om tot hogere orden gemaskeerde imple-
mentaties te versnellen met het gebruik van vectorregisters. We implementeren
AES met 4 delen en met 8 delen en we gebruiken de NEON-eenheid van een
ARM Cortex-A8 om efficiënt geparallelliseerd op de delen te rekenen. We sluiten
af met een veiligheidsevaluatie tegen nevenkanaalaanvallen.

Hoofdstuk 9 introduceert een manier om AES te maskeren met in totaal
slechts twee willekeurige bits door het bedenken van een nieuwe gemaskeerde
AND-operatie en door zorgvuldig hergebruik van willekeurigheid. Met formele
verificatie tonen we aan dat deze aanpak veilig is (tot de eerste orde) in het
sondemodel. We implementeren het ook in assembly op een ARM Cortex-M4
om aan te tonen hoe efficiënt het is en we voeren veiligheidsexperimenten uit.

280

Curriculum Vitae

Ko completed gymnasium at Maurick College in Vught in 2009. He then
moved to Nĳmegen for a bachelor’s degree in computing science at Radboud
University, which was awarded cum laude in 2013. He pursued a master’s
degree in computer security at the Kerckhoffs Institute, a joint programme
formerly offered by Eindhoven University of Technology, University of Twente,
and Radboud University. Radboud University awarded the degree cum laude in
2015, after he wrote his master thesis under supervision of prof. dr. Lejla Batina.
During his master’s degree he additionally completed the honours programme
‘Reflections on Science’.

In 2015, Ko started as a PhD candidate under supervision of prof. dr. Peter
Schwabe in the Digital Security group, part of the Institute for Computing and
Information Sciences at Radboud University. The position was partially funded
by the EU Horizon 2020 project PQCRYPTO. This thesis is the result of that PhD.

In 2018 the research was interleaved for a few months by an internship in
London as a cryptography engineer in the crypto team of Nick Sullivan at Cloud-
flare. Last but not least, Ko is an honorary member of both Studievereniging
Thalia and NSAV ’t Haasje.

List of Publications

1. Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn, and Stefan
Mangard. “First-Order Masking with Only Two Random Bits”. In:
Proceedings of ACM Workshop on Theory of Implementation Security. TIS’19.
ACM, 2019, pp. 10–23

2. Matthias J. Kannwischer, Joost Rĳneveld, Peter Schwabe, and Ko Stoffelen.
“pqm4: Testing and Benchmarking NIST PQC on ARM Cortex-M4”. In:
Second NIST PQC Standardization Conference. 2019

281

Curriculum Vitae

3. Ko Stoffelen. “Efficient Cryptography on the RISC-V Architecture”. In:
LATINCRYPT 2019: 6th International Conference on Cryptology and Infor-

mation Security in Latin America. Vol. 11774. Lecture Notes in Computer
Science. Springer, Heidelberg, Sept. 2019, pp. 323–340

4. Ko Stoffelen and Joan Daemen. “Column Parity Mixers”. In: IACR

Transactions on Symmetric Cryptology 2018.1 (2018), pp. 126–159

5. Benjamin Grégoire, Kostas Papagiannopoulos, Peter Schwabe, and Ko
Stoffelen. “Vectorizing Higher-Order Masking”. In: COSADE 2018: 9th In-

ternational Workshop on Constructive Side-Channel Analysis and Secure Design.
Vol. 10815. Lecture Notes in Computer Science. Springer, Heidelberg, Apr.
2018, pp. 23–43

6. Thorsten Kranz, Gregor Leander, Ko Stoffelen, and Friedrich Wiemer.
“Shorter Linear Straight-Line Programs for MDS Matrices”. In: IACR

Transactions on Symmetric Cryptology 2017.4 (2017), pp. 188–211

7. Ko Stoffelen. “Instruction Scheduling and Register Allocation on ARM
Cortex-M”. in: Software performance enhancement for encryption and decryption,

and benchmarking – SPEED-B. Oct. 2016

8. Peter Schwabe and Ko Stoffelen. “All the AES You Need on Cortex-M3 and
M4”. In: SAC 2016: 23rd Annual International Workshop on Selected Areas in

Cryptography. Vol. 10532. Lecture Notes in Computer Science. Springer,
Heidelberg, Aug. 2016, pp. 180–194

9. Ko Stoffelen. “Optimizing S-Box Implementations for Several Criteria
Using SAT Solvers”. In: Fast Software Encryption – FSE 2016. Vol. 9783.
Lecture Notes in Computer Science. Springer, Heidelberg, Mar. 2016,
pp. 140–160

282

	Acknowledgements
	Introduction
	Outline and Contributions
	Research Data Management

	Preliminaries
	Mathematics
	Symmetric Cryptology
	Idealized Abstractions
	Primitives
	AES

	Cryptographic Implementations
	Assembly
	ARM Cortex-M
	ARM Cortex-A and NEON
	RISC-V

	Side-Channel Attacks and Countermeasures
	Timing Attacks
	Power and Electromagnetic Attacks

	I Cryptographic Building Blocks
	S-boxes
	Introduction
	Shortest Linear Straight-Line Programs
	Optimizing S-box Implementations using SAT Solvers
	Notation
	Optimizing for Multiplicative Complexity
	Optimizing for Bitslice Gate Complexity
	Optimizing for Gate Complexity
	Optimizing for Depth Complexity

	Combining Criteria: Optimizing the PRIMATEs S-box
	Conclusion

	MDS Matrices
	Introduction
	Preliminaries
	Basic Notations
	MDS Constructions
	Specially Structured Matrix Constructions

	Related Work
	Local Optimizations
	Global Optimizations

	Results
	Improved Implementations of Matrices
	Statistical Analysis
	Best results

	Column-Parity Mixers
	Introduction
	Our Contributions

	Column-Parity Mixers and their Properties
	Matrices
	Definition of Column-Parity Mixers
	Group Properties
	The Special Case of Circulant Parity-Folding Matrices
	Computational Cost

	Propagation of Linear Masks
	Linear Propagation in Iterated Permutations
	Mask Propagation in Column-Parity Mixers

	Diffusion Properties
	The Column-Parity Kernel
	Propagation of Isolated Bits
	Comparison to Other Mixing Layers

	A General Design Strategy
	Structure of the Round Function
	Outline of the Steps in our Design Approach
	Searching Linear and Differential Trails

	The Mixifer Permutation
	Design Goals
	The Construction
	Evaluation
	The Number of Rounds
	Implementation Cost
	Comparing to Other Ciphers

	Conclusions and Future Work

	II Optimized Implementations
	ARM Cortex-M
	Introduction
	Preliminaries
	Implementing AES
	ARM Cortex-M
	Accelerating Memory Access

	Making AES Fast
	Our Implementations
	Comparison to Previous Implementations
	Benchmarking with FELICS

	Protecting against Timing Attacks
	Our Implementation

	Protecting against Side-Channel Attacks
	Our Implementation
	Comparison to Previous Implementations

	Conclusion and Outlook

	RISC-V
	Introduction
	The RISC-V Architecture
	The RV32I Base Instruction Set
	Standardized Extensions
	Benchmarking Platform

	AES
	Table-based Implementations
	Bitsliced Implementations

	ChaCha
	Result

	Keccak
	Efficient Scheduling
	Bit Interleaving
	Lane Complementing
	Result

	Arbitrary-Precision Arithmetic
	Carries and Reduced-Radix Representations
	Addition
	Schoolbook Multiplication
	Karatsuba Multiplication

	Extending RISC-V and Discussion
	Speed Comparison with ARM Cortex-M4
	The RISC-V B Extension
	Number of Registers
	Carry Flag

	Conclusion

	III Side-Channel Countermeasures
	Vectorization
	Introduction
	Preliminaries
	Higher-Order Masking of AES
	Strong Non-interference
	Bounded-Moment Leakage Model
	Vectorization with NEON

	Vectorizing Masking of AES
	Representing the Masked State
	Parallel Multiplication and Refreshing
	SubBytes
	Linear Layer
	Performance

	Side-Channel Evaluation
	Measurement Setup
	Security Order Evaluation
	Information-Theoretic Evaluation

	Conclusion and Outlook

	Reusing Randomness
	Introduction
	Masking without Online Randomness
	Computation on Masked Data
	Application to Nonlinear Gates
	Construction of a New Masked AND

	Synthesis of First-Order Secure Implementations
	Masking AES
	SubBytes
	Linear Components
	Results

	Discussion
	Comparison to Previous Work
	Randomness in Perspective
	Hardware

	Security Analysis
	Formal Verification in the t-Probing Model
	Horizontal Attacks
	Beyond the t-Probing Model

	Conclusions and Future Work

	Conclusions and Outlook
	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

