
First-Order Masking with Only Two Random Bits
Hannes Gross1, Ko Stoffelen2, Lauren De Meyer3, Martin Krenn4 and Stefan

Mangard4

1 SGS Digital Trust Services GmbH
hannes.gross@sgs.com

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands
k.stoffelen@cs.ru.nl

3 imec - COSIC, KU Leuven, Belgium
lauren.demeyer@esat.kuleuven.be

4 IAIK, Graz University of Technology, Austria
firstname.lastname@iaik.tugraz.at

Abstract. Masking is the best-researched countermeasure against side-channel analysis
attacks. Even though masking was introduced almost 20 years ago, its efficient
implementation continues to be an active research topic. Many of the existing works
focus on the reduction of randomness requirements since the production of fresh
random bits with high entropy is very costly in practice. Most of these works rely on
the assumption that only so-called online randomness results in additional costs. In
practice, however, it shows that the distinction between randomness costs to produce
the initial masking and the randomness to maintain security during computation
(online) is not meaningful. In this work, we thus study the question of minimum
randomness requirements for first-order Boolean masking when taking the costs for
initial randomness into account. We demonstrate that first-order masking can in
theory always be performed by just using two fresh random bits and without requiring
online randomness. We first show that two random bits are enough to mask linear
transformations and then discuss prerequisites under which nonlinear transformations
are securely performed likewise. Subsequently, we introduce a new masked AND
gate that fulfills these requirements and which forms the basis for our synthesis
tool that automatically transforms an unmasked implementation into a first-order
secure masked implementation. We demonstrate the feasibility of this approach by
implementing AES in software with only two bits of randomness, including the initial
masking. Finally, we use these results to discuss the gap between theory and practice
and the need for more accurate adversary models.
Keywords: masking · AES · first-order masking · randomness · side-channel analysis

1 Introduction
Ever since the findings of Kocher, Jaffe, and Jun [KJJ99] on differential power analysis
and Quisquater and Samyde [QS01] on electromagnetic emanation analysis, the efficient
protection against so-called side-channel attacks has been eagerly studied. Over the years,
masking has proven to be a countermeasure with high and formally well-understood security
guarantees [ISW03, DDF14] as well as good scalability [CJRR99]. Despite its popularity,
the research on more efficient approaches to mask security-critical implementations does
not seem to come to an end soon [BGN+14, GIB18, GM17, GMK16, NRR06, RBN+15].

The lion’s share of works on masking operate in the so-called t-probing model by Ishai,
Sahai, and Wagner [ISW03]. In this model, an adversary is allowed to probe up to t
intermediate values in an implementation. One has security against such an adversary if

mailto:hannes.gross@sgs.com
mailto:k.stoffelen@cs.ru.nl
mailto:lauren.demeyer@esat.kuleuven.be
mailto:firstname.lastname@iaik.tugraz.at

2 First-Order Masking with Only Two Random Bits

those t wires reveal no secret information. Despite the fact that this model has been shown
to be insufficient in practice by several works [BGG+14, PV17, FGP+18], it remains the
foundation for many new masking schemes.

One important drawback of masking is its implementation costs, not least because
of its high demand for fresh randomness. Since the creation of large amounts of fresh
random bits requires additional time, chip area, energy, et cetera, a lot of research has
been done on more randomness-efficient masking [BDF+17, BBP+16, BBP+17, BDCU17,
GD17, GM18, GMK16, FPS17, Sug19]. Most of the existing work, however, focuses on
the randomness optimization for specific masking gadgets, like masked AND gates, and
do not consider the minimization of the overall randomness costs. An interesting result
from prior work is the proof by Faust et al. [FPS17] that first-order masking with only
one bit of randomness is impossible. They also demonstrated the theoretical possibility of
masking with constant randomness cost.

Even more of the masking implementation papers only consider the so-called online
randomness costs spent on producing fresh randomness to secure the computation once
the initial sharing of the input data, e.g., plaintext, ciphertext, or data and key material,
has been performed. There is, to the best of our knowledge, no paper that considers the
minimization of randomness costs when taking the masking of the input data into account
or that tries to minimize the overall randomness costs.

Our contribution. We start off this work in Section 2 by taking a step away from the mod-
ern sharing-based perspective of masking back to the classical Boolean masking perspective.
From this masking point of view, we then demonstrate using linear transformations that
first-order masking is theoretically possible with only two random one-bit masks. We then
discuss what properties need to be fulfilled such that this approach also works for masked
nonlinear transformations and show that existing approaches of masked AND gates do not
fulfill these criteria. As a first practical contribution, we design a masked AND gate that
allows reusing randomness from its inputs safely.

Based on our findings, we introduce in Section 3 a simple rule-based system. These
rules can be encoded in SMT2 statements and they are then used to automatically check
whether the masking approach is directly applicable to an unprotected implementation
or if modifications (mask changes) are required. Upon acceptance, our tool synthesizes
a securely masked implementation for a given set of additional constraints like the used
mask encoding.

We then show how our approach can be applied to larger implementations (Section 4)
and demonstrate its feasibility and its impact on a full AES-128 encryption-only imple-
mentation in Section 4.3. With our approach, we successfully designed the first formally
verified AES S-box design that requires only two random bits for the initial sharing of its
inputs and requires no online randomness to achieve first-order security in the probing
model. Even when going for a full AES implementation, the randomness requirements do
not increase further. However, since existing formal tools are not yet efficient enough to
digest a fully unrolled AES implementation, we instead verify each building block of our
design using the maskVerif tool of Barthe et al. [BBFG18] for a predefined mask encoding
of its inputs and outputs. Ensuring the same mask encoding for each input and output
allows us to argue about the security when putting the components together in the full
AES implementation. Details on the formal verification are given in Section 6.1. Finally,
we discuss the limitations of the t-probing model for security in practice, as exemplified by
our construction, in Section 6.3.

As a final contribution, we make our tool as well as our masking examples publicly
available such that our findings are verifiable and future works can build upon them. Please
find the source code of the program for synthesis and checking, the AES components
and software implementation, as well as the formal verification results in the supporting

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 3

material of this work.1

2 Masking without Online Randomness
The goal of masking is to make the power consumption (and other side-channels related to
the power consumption) independent of security-sensitive information. For this purpose,
the security-sensitive information is first combined with uniformly random sampled data
in an invertible masking function, such that the representation of the data itself becomes
uniformly random distributed. In the case of Boolean masking, the sensitive information s,
for instance, is combined with a random mask m by using the Boolean exclusive-or (XOR)
operation. The resulting masked value s0 = s⊕m0 thus becomes statistically independent
of s, i.e., the mutual information between s and s0 becomes zero. For this reason, any
computation on s0 trivially results in power consumption that is statistically independent
of s as long as m0 is not recombined with s0.

Adversary Model. The security of masked implementations is often expressed in the
so-called t-probing model [ISW03] which assumes that an attacker can make up to t
observations in the implementation (place up to t probes on the circuit). It has been
verified in the past that this formal model also implies security against a differential
side-channel analysis attacker that has access to noisy side-channel leakage traces [DDF14].
We assume in the following a first-order attacker, i.e., an attacker that can place a single
probe on the device.

Sharing vs. Masking. Often in the present literature, the relation between the masked
data s0 and the mask(s) m0 is expressed using a sharing-based notation. For first-order
masking (i.e., only one mask is used to protect s) the information is assumed to be split
into two shares (e.g., s0 and s1) such that again the additive relation s = s0⊕ s1 is fulfilled.
While it is trivial to convert from a masking representation to a sharing representation by
setting s0 = s⊕m and s1 = m, the sharing representation inherently hides the relation
between secret information and masks.

For brevity reasons, we use the sharing based representation in most parts of the paper.
Since in this work, we are particularly interested in the relation between secrets (or shares)
and masks, we often switch to the masking form. To make the used notation clearer,
we always use the prefix m for masks followed by a number in the subscript. Any other
variable name with a suffix subscript number denotes a specific share of the variable. Most
of the time we just use 0 or 1 in the subscript (e.g., a0 or a1) to refer to the first or second
share of a first-order masked variable a, respectively. Without any subscript notation we
always refer to the plain secret variable (a, b, q, . . .).

2.1 Computation on Masked Data
To realize computations that are not only secure against side-channel analysis but also
correct, the computed masked function needs to take the mask into account but in a way
that does not unmask the data. For example, when calculating the XOR of two sensitive
variables as q = a⊕ b, where a is shared in the two shares a0 and a1 and b is shared as b0
and b1, the correct and securely masked realization is trivial:

q0 = a0 ⊕ b0

q1 = a1 ⊕ b1
(1)

1https://github.com/LaurenDM/TwoRandomBits

https://github.com/LaurenDM/TwoRandomBits

4 First-Order Masking with Only Two Random Bits

With Independent Masks. When observing the masked representation of this equation
with a0 = a ⊕ m0, a1 = m0 and b0 = b ⊕ m1, b1 = m1 the correctness can be easily
observed when considering the addition of the shares of q, because both shares added
together result in the desired operation in the sensitive variables a and b.

q = q0 ⊕ q1

= (a⊕m0)⊕ (b⊕m1)⊕m0 ⊕m1

= a⊕ b

To demonstrate the first-order security of the masked realization of the XOR in
Equation 1, it needs to be shown that each intermediate value (in this case only the output
shares q0 and q1) is statistically independent of a and b. Statistical independence is given
because we assume that each of the two masks m0 and m1 is uniformly random and
statistically independent of each other. By looking at the truth table for both shares of q
in Table 1, one can observe that, when subdividing the truth table into the four possible
combinations of values for a and b, the count of “1” appearances (or equivalently the
Hamming weight of the truth table) for q0 and q1 in each case are equal.

Table 1: Truth table of the masked XOR from Eqn. 1

Shares Secrets TT
a0 a1 b0 b1 a b a⊕ b q0 q1

0 0 0 0

0 0 0

0 0
0 0 1 1 1 1
1 1 0 0 1 1
1 1 1 1 0 0

TT Hamming Weight: 2 2

0 0 0 1

0 1 1

0 1
0 0 1 0 1 0
1 1 0 1 1 0
1 1 1 0 0 1

TT Hamming Weight: 2 2

0 1 0 0

1 0 1

0 0
0 1 1 1 1 1
1 0 0 0 0 0
1 0 1 1 1 1

TT Hamming Weight: 2 2

0 1 0 1

1 1 0

0 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 0 1 0

TT Hamming Weight: 2 2

This equal distribution for each possible combination of secrets, results in power
consumption that is on average equal for all cases of a and b. We note that an attacker
with the ability to probe more signals could observe differences by combining multiple
probed signals. Higher-order leakages, however, are more difficult to exploit than the
average power consumption (exponentially more observations are required [CJRR99]) and
are not considered in this paper.

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 5

With Equal Masks. The situation changes when assuming that both masked variables
use the same mask m0 = m1, which trivially reveals a and b in the equation of q0.

q0 = a0 ⊕ b0 = (a⊕m0)⊕ (b⊕m0) = a⊕ b

Most state-of-the-art masking works assume that shares are produced using independent
random masks which helps to avoid such situations. So when multiple XOR operations
are chained together (e.g., a⊕ b⊕ c⊕ · · · ⊕ z) a lot of random masks are accumulated.

q0 = a0 ⊕ b0 ⊕ c0 ⊕ · · · ⊕ z0

= (a⊕m0)⊕ (b⊕m1)⊕ (c⊕m2)⊕ . . . (z ⊕m25)
q1 = a1 ⊕ b1 ⊕ c1 ⊕ · · · ⊕ z1

= m0 ⊕m1 ⊕m2 ⊕ · · · ⊕m25

Please note that we assume here and in the remainder of the paper that the masked
equations are evaluated from left to right, and parentheses indicate atomic operations that
do not produce further intermediate results (often to indicate the result of the evaluation of
a sharing function or initial sharings). Our first and admittedly rather trivial observation
is that the amount of accumulated randomness is unnecessarily high. One can realize the
same function in a secure and correct shared way by simply alternating two random masks
m0 and m1 in such a way that at no time an intermediate result is formed that depends
on the secret value without a mask. One possible realization is to use m0 to mask a and
use m1 for the remaining variables:

q0 = (a⊕m0)⊕ (b⊕m1)⊕ (c⊕m1)⊕ . . . (z ⊕m1)
= a⊕ b⊕ c⊕ · · · ⊕ z ⊕m′

q1 = m0 ⊕m1 ⊕m1 ⊕ · · · ⊕m1

= m′

where m′ = m0 if the number of inputs is odd (and thus the number of m1 masks is even)
and else m′ = m0 ⊕m1.

This is only one example and there exist many other possible and secure realizations
for this function. Depending on the mask assignments to the inputs, the resulting mask of
the output can be either m0 or m1 or their combination m0 ⊕m1. With these findings,
we can secure any linear function likewise. However, extending this to nonlinear functions
is not straightforward.

2.2 Application to Nonlinear Gates
There exists a vast variety of first-order masked AND gates in the literature which form
the simplest class of nonlinear functions and are used to construct more complex functions.
These realizations of masked AND gates usually vary regarding online randomness require-
ments and the number of used input and output shares. The underlying functionality is of
course always the same and, in the case of a realization with two shares, it requires the
secure evaluation of four multiplication terms (where ∧ represents a single AND operation):

q = a ∧ b = (a0 ⊕ a1)(b0 ⊕ b1)
= a0 ∧ b0 ⊕ a0 ∧ b1 ⊕ a1 ∧ b0 ⊕ a1 ∧ b1

(2)

Any direct combination of either two multiplications terms (e.g., a0b0⊕a0b1) is insecure
because it leads to a function that statistically depends on the secret a or b. Most of the

6 First-Order Masking with Only Two Random Bits

Table 2: Truth table for q0 of Biryukov et al.’s masked AND (or for q1 if a0 is replaced by
a1)

Shares Secrets TT
a0 b0 b1 b q0 q0 ⊕ a0 (q0 ⊕ a0)⊕ b0

0 0 0

0

1 1 1
0 1 1 0 0 1
1 0 0 1 0 0
1 1 1 0 1 0

TT Hamming Weight: 2 2 2

0 0 1

1

0 0 0
0 1 0 1 1 0
1 0 1 1 0 0
1 1 0 0 1 1

TT Hamming Weight: 2 2 0

existing masked AND gadgets thus use fresh random masks to realize the secure evaluation,
like m2 is used in the following example.

q0 = a0 ∧ b0 ⊕m2 ⊕ a0 ∧ b1

q1 = a1 ∧ b0 ⊕m2 ⊕ a1 ∧ b1
(3)

This masked AND gate is indeed secure as long as the order of execution is from
left to right and the masks including the ones used for sharing a and b are statistically
independent and uniformly distributed. Another advantage of this realization is that it
inherently refreshes the sharing which makes the result independent of a and b. Any linear
or nonlinear combination of q with the sharing of a or b is thus still possible, as long as
the transformation itself is secure under the assumption of independently shared inputs.

Without Fresh Randomness. There also exist realizations of a masked AND gate that
do not require any fresh randomness. As an example, we consider the following equations
from Biryukov et al. [BDCU17] where ∨ is the OR operation:

q0 = a0 ∧ b0 ⊕ (a0 ∨ ¬b1)
q1 = a1 ∧ b0 ⊕ (a1 ∨ ¬b1)

(4)

A closer look at the properties of this realization from Biryukov et al. in Table 2 reveals
that, while the masking itself is secure, a further (linear) combination with shares or
combinations of shares from a and b (barring a0⊕ a1) can make the sharing insecure again.
Because this masked AND gate is insensitive to combinations with a single share from
a (cf. column q0 ⊕ a0 in Table 2), one could assume that q is similarly protected as an
XOR gate is protected by the mask m1 of b. The problem is that this masked AND gate
behaves entirely different than the masked XOR gate from Equation 1 or the masked AND
from Equation 3. For the output of a masked XOR gate where q0 = a⊕ b⊕m1, we may
assume that an XOR with m0 followed by the addition of m1 would result in a secure
sharing masked by m0, since (a⊕ b⊕m1)⊕m0 ⊕m1 results in a⊕ b⊕m0. However, in
case of the masked AND gate from Equation 4, the XOR combination of the output q0
with m0 followed by another XOR with m1 results in an insecure sharing (see different
truth table Hamming weights for different cases of b in Table 2). Chaining of masked AND
operations by carefully selecting (or changing) between two different masks is thus not
possible with this masked AND gate.

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 7

2.3 Construction of a New Masked AND
We first transform the secure equations of Biryukov et al. such that we can directly observe
what happens to the multiplication terms.

q0 = a0 ∧ b0 ⊕ (a0 ∨ ¬b1)
= a0 ∧ b0 ⊕ ¬(¬a0 ∧ b1)
= a0 ∧ b0 ⊕ (a0 ∧ b1 ⊕ b1)⊕ 1

q1 = a1 ∧ b0 ⊕ (a1 ∨ ¬b1)
= a1 ∧ b0 ⊕ ¬(¬a1 ∧ b1)
= a1 ∧ b0 ⊕ (a1 ∧ b1 ⊕ b1)⊕ 1

(5)

It can be verified that the terms a0 ∧ b0 ⊕ (a0 ∧ b1 ⊕ b1) from q0 and a1 ∧ b0 ⊕
(a1 ∧ b1 ⊕ b1) from q1, considered separately, are securely masked by b1 (= m1, in the
masking representation). Consider also the similarity with Equation 3, but with m2
replaced by b1 in a similar fashion as so-called correction terms are used in threshold
implementations [NRS08]. It is also interesting to note that these expressions correspond
to multiplexer formulas: a0 ∧ b0 ⊕ (¬a0)⊕ b1 = b0 if a0 = 0, else b1.

New construction. The design idea to ensure that the resulting sharing behaves similarly
to the masked XOR gate is to securely combine all multiplication terms (Equation 2) in a
single share of q, together with a single mask. However, adding q0 and q1 from (5) directly
together is insecure because this results in a ∧ b without any mask. We therefore first add
a1 (= m0) to the second term (q1) and then, both terms can be added without leaking
information. The result (our new q0) is only masked with a single mask m0. To achieve
correctness the second share (the new q1) is set to m0 (or equivalently a1). This then
results in the following masked AND gate:

q0 = (a0 ∧ b0 ⊕ (a0 ∧ b1 ⊕ b1))⊕ ((a1 ∧ b0 ⊕ (a1 ∧ b1 ⊕ b1))⊕ a1)
= (a ∧ b)⊕m0

q1 = a1 = m0

(6)

Further optimization. By closer observation of Equation 6, we find that under given
circumstances (possible mask configurations associated with the input shares), another
optimization is possible. The truth table of the term (a1 ∧ b1 ⊕ b1))⊕ a1 of Equation 6 is
depicted in Table 3, which shows that it corresponds to a simple logical OR of the two
input shares.

Table 3: Truth table of the equation (a1 ∧ b1 ⊕ b1))⊕ a1

a1 b1 = a1 ∨ b1

0 0 0
0 1 1
1 0 1
1 1 1

However, what is even more remarkable, is that when going through all possible valid
mask configurations for the input shares (see Table 4), the term becomes a common
constant (m0 ∨m1) for all masked AND gates using the same masks. Please note that we

8 First-Order Masking with Only Two Random Bits

Table 4: Possible mask configurations for the input shares a1 and b1

a1 b1 a1 ∨ b1

m0 m0 invalid
m0 m1 = m0 ∨m1
m0 (m0 ⊕m1) = m0 ∨m1
m1 m0 = m0 ∨m1
m1 m1 invalid
m1 (m0 ⊕m1) = m0 ∨m1

(m0 ⊕m1) m0 = m0 ∨m1
(m0 ⊕m1) m1 = m0 ∨m1
(m0 ⊕m1) (m0 ⊕m1) invalid

define the second share of any variable (e.g., a1, b1) to carry only the mask information
and never the secrets (a or b) in combination with a mask.

We thus write m0 ∨m1 as [m0 ∨m1] in the resulting equation to denote that this is
a term that only needs to be calculated once. The pratical implications become more
evident in the implementation sections. With this optimization, Equation 6 simplifies to
Equation 7 which saves one AND gate (for multiple occurences of masked ANDs) and two
XORs for each masked AND gate.

q0 =
t3︷ ︸︸ ︷

(a0 ∧ b0︸ ︷︷ ︸
t1

⊕(a0 ∧ b1 ⊕ b1)︸ ︷︷ ︸
t2

)⊕
t5︷ ︸︸ ︷

(a1 ∧ b0︸ ︷︷ ︸
t4

⊕[m0 ∨m1])

q1 = a1

(7)

Security. The security of the masked AND gate can be easily verified by hand as shown
in Table 5 where ti values denote intermediate results. We again record all possible input
share combinations in a truth table and sort them by the unshared secrets a and b. For
each possible intermediate (t1 to t5, and q0), we count the number of ones in the truth
tables per secret value for a and b (TT Hamming weight). If the truth table Hamming
weights of ti (resp. q0) are identical for each secret, then the probability distribution of ti
(resp. q0) is independent of the secret. Table 5 clearly shows that this is the case; Hence,
a first-order attacker does not gain any sensitive information by probing either one of the
intermediates.

In addition to the manual inspection of the masked AND gate, we also performed a
formal verification by using the tools by Bloem et al. [BGI+18] and Barthe et al. [BBFG18]
which gave us the same results. Furthermore, we did the same verification for the
composition of the AND gate with an XOR (q ⊕ b) and with another AND (q ∧ b). For
the tables we refer to Appendix A. The code for maskVerif [BBFG18] can be found in our
supplementary material.2 We note that for secure composition with the other input (a),
the roles of a and b should be switched in Equation 7.

By combining the findings for the XOR and the AND gates we can mask arbitrary
implementations, and as we will show in the next section, we can also derive simple rules
to synthesize securely masked implementations from unprotected ones.

2https://github.com/LaurenDM/TwoRandomBits

https://github.com/LaurenDM/TwoRandomBits

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 9

Table 5: Security of the masked AND from Eqn. 7

Shares Secrets TT
a0 a1 b0 b1 a b a ∧ b t1 t2 t3 t4 t5 q0

0 0 0 0

0 0 0

0 0 0 0 0 0
0 0 1 1 0 1 1 0 1 0
1 1 0 0 0 0 0 0 1 1
1 1 1 1 1 0 1 1 0 1

TT Hamming Weight: 1 1 2 1 2 2

0 0 0 1

0 1 0

0 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 1 1
1 1 1 0 1 0 1 1 0 1

TT Hamming Weight: 1 1 2 1 2 2

0 1 0 0

1 0 0

0 0 0 0 1 1
0 1 1 1 0 1 1 1 0 1
1 0 0 0 0 0 0 0 0 0
1 0 1 1 1 0 1 0 1 0

TT Hamming Weight: 1 1 2 1 2 2

0 1 0 1

1 1 1

0 1 1 0 1 0
0 1 1 0 0 0 0 1 0 0
1 0 0 1 0 0 0 0 1 1
1 0 1 0 1 0 1 0 0 1

TT Hamming Weight: 1 1 2 1 2 2

3 Synthesis of First-Order Secure Implementations
Manually tracking the masks as they propagate through the implementations quickly
becomes a very complex task as the implementation size increases. We thus decided to
develop an automated approach to create a masked implementation when possible, or to
indicate which signals need to be changed otherwise. As a first step, the tool reads the
description of a Boolean program in static single assignment (SSA) form in Verilog syntax
such that each instruction is either a one-bit signal assignment or a two-bit XOR, XNOR,
or AND gate. The Boolean circuit is then represented as an SMT problem which is fed to
the Z3 [dMB08] theorem prover. Z3 searches for a possible solution for the mask encoding
of the input signals so that for each gate the inputs have different masks. Furthermore, it
allows ensuring a desired mask encoding for the input and output signals. We now give a
more detailed description of how the implementation is encoded in SMT2 and which steps
are necessary.

Input mask encoding. Each implementation takes two masks m0 and m1. As a result,
there are three possible mask combinations and thus three possible encodings for the input
signals: 1 = m0, 2 = m1, 3 = m0 ⊕m1. With the following SMT2 code snippet, the input
signal a is mapped to any of the three masking combinations. We adjust the assertions
accordingly, depending on whether we target a specific encoding or we let the theorem
prover decide on the encoding.

; Input encoding d e f i n i t i o n and con s t r a i n t s
(declare−const a Int)
(assert (> a 0))
(assert (< a 4))

10 First-Order Masking with Only Two Random Bits

The same rules are also applied to every output of a gate to restrict the output mask
encoding to these three possibilities.

Gate connections and encoding rules. For each of the four possible instruction classes
(assignment, XOR, XNOR, and AND) of the SSA-encoded input file, we create specific
rules for deciding which masks can appear in the output q for the given input combination.
In the example encoding it is always assumed that the signals a and optionally b form the
operands. The encoding of the signal assignment q = a just results in a copy of the mask
encoding in the SMT2 rules.

; S i gna l assignment r u l e
(assert (= q a))

To encode the output of the XOR (and XNOR) instructions, we utilize the fact that
for different input encodings of a and b, the output encoding (calculated by an XOR) is
always different from the input encodings and equal to the third unused one.

m0 ⊕m1 = (m0 ⊕m1)
m0 ⊕ (m0 ⊕m1) = m1

m1 ⊕ (m0 ⊕m1) = m0

. . .

When neglecting the case that both inputs could have the same mask encoding, which
is covered by the safety rules for the gates in the next step, the following SMT2 encoding
can be used.

; XOR/XNOR gate r u l e
(assert (not (or (= q a) (= q b))))

Note that the negation of the output in case of the XNOR has no influence on the
encoding because it is a simple addition of a constant value 1.

Finally, for the AND gate, the mask encoding can be the same as either operand since
the operands can be simply swapped. We thus let the theorem prover decide which signal is
used as the first operand and this defines the mask encoding of the output (see Equation 7).
The information of which masks appear in the output is later on taken into account when
the masked implementation is created to decide on the first operand.

; AND gate r u l e
(assert (or (= q a) (= q b)))

Again the AND gate rule does not cover the cases of both operands having the same
mask encoding.

Safety rules. For each two-input gate, we additionally define that both operands are
required to have a different mask encoding which otherwise would create a flaw in the
masked implementation.

; Sa f e t y r u l e f o r two input ga t e s
(assert (not (= a b)))

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 11

Output constraints (optional). To make the design and verification of separate modules
easier, we decide to use the same input and output mask encoding on byte-level for all
our modules. We can for example restrict the output encoding by setting the input and
output signals equal.

; Equal input and output byte−encoding
(assert (= o0 i 0))
(assert (= o1 i 1))
(assert (= o2 i 2))
. . .
(assert (= o7 i 7))

Checking of the model and creating the masked implementation. When the Z3 the-
orem solver finds a secure model that fulfills our constraints, it constructs the mask
assignments for a masked implementation. The translation of the unprotected scheme to a
secure masked implementation is then rather straightforward. At first, we duplicate all
input and output ports of the module and additionally add the two masks m0 and m1 as
input signals. For each instruction of the SSA input file we replace the original code by
its masked variant according to the masked gates introduced in Section 2. As a further
optimization, the second share of each instruction is (optionally) replaced by the resulting
mask of the output signal which helps to save unnecessary instructions that would result
in one of the three mask encodings anyway.

We do not give a more detailed description of our tool at this point since the rest of
the functionality follows from the description of the masked gates above and is mostly
engineering work.3

4 Masking the AES
To demonstrate the practicality of our approach, we target the AES-128 (encryption-only)
as an example. Since none of the existing formal verification tools are yet powerful enough
to verify a full AES encryption, we decide to use a modular implementation and verification
approach. To justify the security of the overall design when bringing the modules together,
we restrict the mask encoding for each input and output byte of every function to be equal.

Our software implementation is partially based on earlier work by Schwabe and
Stoffelen [SS16]. In their paper they describe various optimized assembly implementations
targeting the 32-bit ARM Cortex-M3 and Cortex-M4 microcontrollers. One implementation
is masked using 2 Boolean shares. This is a bitsliced implementation of AES-128 in CTR
mode, such that two consecutive AES blocks can be efficiently processed in parallel. When
256 blocks (or 4 kilobyte) of data are encrypted, they measure that encryption on average
takes 7,423 cycles per block (or 464 cycles per byte). They also note that 2,133 cycles of
these are spent on generating all required 10,496 random bits using the onboard hardware
RNG, which is almost 29% of the total cycle count.

Our implementation uses the same hardware RNG, but we only generate a single 32-bit
fresh random word. The architecture dictates a multiple of 32 bits, so 28 of these are
ignored, 2 are used for the first AES block, and 2 for the second AES block.

4.1 SubBytes
The most complicated part of the AES is its SubBytes layer which can be implemented as
16 instances of S-box modules. Most of the masked AES designs published over the last

3The tool along with some examples for the AES implementation can be found at https://github.
com/LaurenDM/TwoRandomBits

https://github.com/LaurenDM/TwoRandomBits
https://github.com/LaurenDM/TwoRandomBits

12 First-Order Masking with Only Two Random Bits

years are based on the S-box construction of Canright [Can05]. A more suitable design
for our bit-wise approach, however, is the design of Boyar and Peralta [BP12] which is
already constructed in SSA form. There are follow-up works [BMP13, VSP17] that further
reduce the size of the implementation in terms of gates/instructions. Various unmasked
S-box implementations can be found on [BDP+]. For hardware implementations, we would
recommend the S-box which aims at minimizing the logic depth (16). The original code of
the forward S-box consists of 128 SSA instructions. In total there are 34 AND, 90 XOR
and 4 XNOR instructions for the unmasked implementation. Each instruction takes two
one-bit variables as input. For our case (a software implementation), the logic depth is
not of such importance, so we choose the S-box with the smallest gate count (113). This
S-box has 32 AND, 77 XOR and 4 XNOR instructions and has logic depth 27.

Result of the Tool. After running our synthesis tool on this S-box design without any
further optimizations, the resulting masked design consists of 96 AND gates, 228 XOR
gates, and 4 NOT gates (because XNORs are decomposed to one XOR followed by a not
gate in Yosys’ ILANG). The 96 AND gates result from the fact that the masked AND
triples the number of AND gates compared to the unmasked design. Also, each masked
AND gate introduces 4 XOR gates which in total results in 128 additional XOR gates. The
masking of the XOR and XNOR gates, on the other hand, do not introduces additional
circuitry since the second output share can simply be assigned to the third mask (i.e.unused
by the inputs). Some additional XOR gates are required because at some points we need
to change the masking of a signal by introducing additional XOR instructions to receive a
satisfiable Z3 model and thus a securely synthesizable implementation, and to ensure that
the input and output mask encoding is equal.

After running an optimization pass in Yosys, which maps gates implementing the same
function to a single gate and thus eliminates duplications, the number of gates could be
reduced to 86 AND gates, 1 OR gate, 225 XOR gates and 4 NOT gates. We rerun the
verification after this optimization to ensure that the implementation remains secure. The
NOT gates can be moved to the key schedule such that they are not executed for every
encryption/decryption call with the same key. The total overhead for the masking of the
S-box is thus about a factor 2.79 regarding arithmetic instructions.

Byte Encodings. From the design of the S-box, we also gathered a byte encoding to
be used for the rest of the AES modules to ensure security and correctness of the full
encryption. The byte encoding is {2, 3, 3, 1, 1, 2, 1, 2} in the SMT encoding, corresponding
to {m1,m0 ⊕m1,m0 ⊕m1,m0,m0,m1,m0,m1} as the mask encoding for the S-box input
bits i0 to i7.

Implementation. The targeted microarchitecture has only 14 registers that can be freely
used, which means that many store and load instructions need to be inserted. On this
platform, loads from memory are relatively expensive. Most arithmetic instruction execute
in a single cycle, while a load instruction will take at least two cycles, although when N
loads can be pipelined they can often execute in N + 1 cycles. Stoffelen [Sto16] created a
tool that automatically reschedules instructions and allocates registers in order to minimize
the overhead caused by spilling values to the stack. We use the same tool to schedule the
60 load instructions and 51 store instructions on top of the arithmetic instructions.

4.2 Linear Components
ShiftRows. Since the ShiftRows transformation only changes the order of the bytes in the
state rows, no special modifications are required for the round transformation compared to
an unprotected design. Furthermore, all of the masked AES modules (in the final design)

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 13

do not explicitly carry the second share of each signal but instead just assume the byte
mask encoding as used by the S-box for inputs and outputs as the second share. ShiftRows
can be implemented with only wiring in hardware, but in software we need instructions
to actually move the bits around. We use the same ShiftRows implementation as that of
Schwabe and Stoffelen [SS16], which requires 104 single-cycle instructions.

MixColumns. We start with the unmasked MixColumns implementation by Schwabe
and Stoffelen [SS16], that uses 27 32-bit XORs for the four-column operation. However, to
translate this to a masked implementation we now need to be careful that no values with
the same mask get combined and ensure the correct byte mask encoding of the inputs and
outputs. We therefore need to remask various values and the masks need to be loaded
from the stack. In total we need to add 12 XOR and 6 load instructions to the original 27
XORs. A program was used to verify that this was done correctly.

AddRoundKey. In AddRoundKey the round key is added to the state (or the plaintext
in the first round). Since we enforce the same byte encoding for all bytes in our design,
the key byte first needs to be remasked before it can be added to the state or plaintext
byte and the result of the XOR also requires remasking. Instead of 8 32-bit XORs as in
the unprotected bitsliced design, we thus require 32 XOR instructions. The number of
XORs could be reduced to only sixteen if the state and key bytes are shared such that
their sum again results in the assumed byte sharing for the S-box. Due to the lack of the
possibility to formally verify the whole implementation, we decide on keeping the byte
encoding for both key and state bytes the same. This makes arguing of the security of
the overall implementation for individually verified modules easier because there are fewer
issues to oversee. In addition to the arithmetic instructions, we use 11 load instructions
and 1 store.

4.3 Results
For the entire AES encryption, we measure on average 3,387.6 cycles per block (or 211.7
cycles per byte) under the exact same test conditions as in [SS16]. This is a speed
improvement of roughly 54%. Moreover, the stack requirements are lowered from 1588
bytes to only 188 bytes, a decrease of over 88%.

Schwabe and Stoffelen also provided an unmasked bitsliced AES-128-CTR implementa-
tion as an intermediate step. This took only 1617.6 cycles per block (or 101.1 cycles per
byte) on the Cortex-M4. The overhead cost of adding first-order masking is therefore still
almost a factor 2.1.

The most computation effort in each round is spent on the S-box calculations with
68.7% of the instructions. The AddRoundKey and MixColumns operations consume
respectively 7.1% and 7.3% of the round instructions. The remaining instructions are
mostly spent on the ShiftRows transformation with about 16.9%.

Table 6 summarizes the costs for the individual transformations that are required to
implement the full AES.

5 Discussion
5.1 Comparison with Previous Work
A comprehensive comparison of our results with previous work is very difficult. On the
one hand, masked AES implementations have been created for many different platforms.
On the other hand, a number of works only report the speed which means a lot of data
about memory usage is missing. Moreover, these speeds were measured on different CPU

14 First-Order Masking with Only Two Random Bits

Table 6: AES-128-CTR implementation results in terms of instruction counts

Module # AND XOR Bit op* Load Store

AES† 870 3 433 560 773 520

PreRound 1 - 32 - 8 1
I AddRoundKey‡ 1 - 32 - 8 1

Round 9 87 344 56 77 52
I SubBytes 1 87 225 - 60 51
I ShiftRows 1 - 48 56 - -
I MixColumns 1 - 39 - 6 -
I AddRoundKey‡ 1 - 32 - 11 1

LastRound 1 87 305 56 72 51
I SubBytes 1 87 225 - 60 51
I ShiftRows 1 - 48 56 - -
I AddRoundKey‡ 1 - 32 - 12 -
* This includes ubfx and uxtb instructions.
† This excludes the function prologue and epilogue, reading a random word and changing it to the right
format, bitslicing the input, unbitslicing the output, loading the input, storing the output, increasing
the CTR-mode counter, the initial masking of the input, the final unmasking of the output, XORing
the keystream with the plaintext, keeping track of the remaining length, and managing some pointers
and addresses. Of course all of this is included in the speed measurement.

‡ Loads and stores slightly differ due to values that are already in registers or no longer necessary.

(micro)architectures, which makes them harder to compare. For masked implementations,
rather than comparing absolute execution times, it makes more sense to compare the
overhead factor over an unprotected implementation, as was done in [WVGX15]. However,
we were not able to find implementation results for unmasked implementations in all works.
Furthermore, none of the previous works consider the cost of the initial masking of plaintext
and key. Finally, it should also be noted that a lot of these works also present higher-order
masking schemes, which again makes comparison with our optimized first-order AES
unreasonable. Nevertheless, we gathered some data in Table 7 for completeness.

Performance. The only previous works for which a comparison is justified is the work of
Schwabe and Stoffelen [SS16], since we used the same platform. When comparing to that
work, we can conclude that our dramatic decrease of randomness does not imply sacrifices
when it comes to speed or memory.

When it comes to speed, we also look at the work of Wang et al. [WVGX15], since
it was able to create a significant improvement over previous works. By comparing the
overhead factors over an unprotected implementation, we can conclude that the speed of
our implementation is competitive.

It should be noted that like the implementations by Goudarzi et al. [GR17], we do not
include a masked key schedule but instead store the precomputed round keys in memory
in shared form.

Finally, we point out that we compare the average encryption speed per AES block, but
as our implementation always processes two blocks in parallel using CTR mode, one cannot
reach this speed when encrypting only a single AES block. Moreover, the implementation
is fully unrolled, which results in very high speed and a large ROM requirement. If the
ROM size is deemed too high for a particular application, it would be trivial to drastically
reduce it at the cost of only a few extra CPU cycles.

Randomness. When it comes to total randomness consumption, our implementation
clearly outshines most of the previous works. Only Faust et al. [FPS17] had previously

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 15

reported a first-order AES with constant randomness. In fact, they were the first to show
its feasibility. However, their complete AES implementation is not discussed in detail. For
example, it is not clear if the 8 S-box input bits also use the same masks and if this is the
case, which encoding was used. Although they use the same development board (including
the hardware RNG), it should be noted that their implementation was written in C and
more meant as a proof of concept than as a carefully optimized implementation.

Security. Apart from differences in speed, memory usage and randomness consumption,
the implementations in Table 7 naturally also differ in level of practical security. A low
fresh randomness consumption goes hand-in-hand with higher signal-to-noise ratio, which
can benefit the adversary. It has also been noted that the reuse of randomness leads
to dangerous transition leakage [WM18b]. On the other hand, transition leakages have
also been shown to be a problem in the more conventional randomness-expensive masked
implementations [PV17], which means our implementation is not necessarily the only one
vulnerable to this. Moreover, even if we double our latency to account for reset cycles
against transition leakage, our performance is very competitive with previous works.

Table 7: Comparing Performance Results for AES-128

Platform Speed
[cycles]

Overhead
factor

ROM
[bytes]

RAM
[bytes]

Random
[bits]

Comparable Platform

This Work Cortex-M4 3 387.6 2.1 25.2k 188 2
[SS16] Cortex-M4 7 422.6 4.6 39.9k 2.0k 10.5k
[FPS17] Cortex-M4 73 650 - - - 2/16

Different Platforms

[RP10] 8-bit 8051 129 000 64.5 3.2k 73 9.6k
[BFG+17] 8-bit AVR 157 196 - 2.8k (in total) 13.1k
[BFG+17] 8-bit AVR 73 769 - 1.8k (in total) 11.5k
[GR17] ARM7TDMI 53 462 - 7.5k - 30.8k
[GR17] ARM7TDMI 49 329 - 4.8k - 26.9k
[GR17] ARM7TDMI 56 199 - 12.4k - 19.2k
[WVGX15] Cortex-A15

simulator
4 869 4.3 - - 19.2k

5.2 Randomness in Perspective
Offline. Our design requires no online randomness and only two random bits for the
initial sharing. For other implementations in the literature at least 128 bits for the sharing
of the key and 128 bits for the sharing of the plaintext are required for a two-share
implementation, or 2 · 256 bits for a three-share threshold implementation, respectively.
From this perspective, our implementation saves at least 254 random bits for the initial
sharing alone.

Online. In the current state-of-the-art on first-order masking, each multiplication and
refreshing block requires one unit of fresh randomness. In the case of the AES S-box,
each unit is one byte and the S-box can be constructed using four multiplications and two
refreshings [RP10], which brings the total randomness cost per S-box evaluation to 48 bits.
One SubBytes transformation consists of 16 S-boxes and thus requires 768 random bits.
One encryption round including key schedule requires 960 bits. In total, the amount of
online randomness for one AES-128 encryption is thus 9.6 kbits.

16 First-Order Masking with Only Two Random Bits

For the sake of completeness, we note that in hardware masking, there exist more
online randomness efficient S-box implementations which, however, require an increased
amount of input shares for the S-box (e.g., the four-share S-boxes of Ghoshal et al. [GD17]
and Wegener et al. [WM18a]). There is no full AES implementation or estimation given
in [GD17], so further comparison is difficult. Moreover, a flaw in their design was detected
and reported by Wegener and Moradi [WM18a]. The S-box of [WM18a] also has four input
and output shares and exploits the changing of the guards trick by Daemen [Dae17] to
obtain zero online randomness consumption. Their full design uses the dynamic conversion
approach, but avoids extra online randomness by a clever recycling of independent state
bytes. They thus only require 256 bits for the initial sharing of the plaintext and key
and 24 additional bits for the initial guards. More recently, Sugawara [Sug19] presented
the first three-share AES S-box without online randomness. However, their entire AES
implementation still uses 776 initial bits of randomness, which exceeds that of [WM18a].

Summary. Comparing our design with others is quite difficult because most of the existing
implementations do not consider the amount of required initial randomness for sharing
the key and plaintext data. However, we have at least shown that also the performance
can be competitive with state-of-the-art implementations, even if we double the latency
with reset cycles against transitional leakages. Requiring only two bits of randomness for
each masked encryption could thus make the difference between deciding on requiring an
additional PRNG or using an already on-board TRNG, and could thus make first-order
masking cheap enough to be used for highly constrained devices like low-cost RFID tags.

5.3 Hardware
For a SCA-resistant implementation in hardware, security in the probing model with
glitches needs to be ensured. The security of our approach critically depends on the correct
order in which the signals are combined. For this reason, registers are required after
t1, t2, t3, t4 and t5.

The above has been formally verified in the presence of glitches using maskVerif [BBFG18].4
Hence, our methodology is also applicable to hardware masking.

Efficiency. In practice however, the method is more amenable for application in software.
The need for many registers means we pay for the randomness reduction by an increased
amount of latency. The unmasked Boyar-Peralta S-box has a maximum logic depth of
16 and an AND depth of 4. Every masked AND gate requires three cycles to securely
calculate the result. Accordingly, the total latency of the S-box is 12 cycles (16− 4 XOR
layers) plus 12 (4 AND layers ×3) which in total amounts to 24 cycles. In software, the
impact of our masking method on the latency is less dramatic, both because of the absence
of glitches and because of the possibility of bitslicing.

Security. Moreover, most hardware masked AES implementations are round-based with a
serial S-box calculation. As was shown by Wegener and Moradi [WM18b], these serialized
designs can introduce dangerous transition leakages. So, in contrast with an unrolled
implementation, these designs require register reset cycles or precharge logic, which would
essentially again increase the latency to its double. For these reasons, we do not investigate
a hardware implementation in further detail. We further discuss the security issues in
Section 6.3.

To conclude, we have demonstrated that two random bits are enough to achieve
theoretical first-order security in the probing model even in the presence of glitches. Its

4Please find the results in our supplementary material at https://github.com/LaurenDM/TwoRandomBits

https://github.com/LaurenDM/TwoRandomBits

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 17

implementation in practice however incurs a high penalty in latency and requires extra
care to not introduce new leakages.

6 Security Analysis
6.1 Formal Verification in the t-Probing Model
For the verification of the side-channel security of our approach, we used the formal
verification tool maskVerif of Barthe et al. [BBFG18] on the synthesized modules. Since
maskVerif is originally designed to verify sharing-based implementations, the outcome of
our synthesis tool creates a verification wrapper that is later on modified to represent the
correct masking for the input signals of the actual masked implementation. The verification
wrapper thus takes two shares per input of the masked module and creates the correct
masking by first adding the mask as defined by the mask encoding and subsequently the
second share of the input.

The input bits {i0, i1, . . . i7} of the masked AES S-box module for example, uses the
same SMT mask encoding {2, 3, 3, 1, 1, 2, 1, 2} (where 1 denotes m0, 2 denotes m1, and 3
denotes m0 ⊕m1) as any other module for both inputs and outputs. We take the input
shares of the wrapper (indicated by the suffix “_0” for the first share or “_1” for the
second share) and create the actual masking as follows.

module ve r i f i c a t i on_wrappe r (
input i0_0 , i1_0 , . . . , i7_0 ,
input i0_1 , i1_1 , . . . , i7_1 ,
input m0, m1,
output o0 , o1 , . . . , o7) ;

// Mask encoding
assign i 0 = (i0_0 ^ m1) ^ i0_1 ; // 2
assign i 1 = (i1_0 ^ m0 ^ m1) ^ i1_1 ; // 3
assign i 2 = (i2_0 ^ m0 ^ m1) ^ i2_1 ; // 3
assign i 3 = (i3_0 ^ m0) ^ i3_1 ; // 1
assign i 4 = (i4_0 ^ m0) ^ i4_1 ; // 1
assign i 5 = (i5_0 ^ m1) ^ i5_1 ; // 2
assign i 6 = (i6_0 ^ m0) ^ i6_1 ; // 1
assign i 7 = (i7_0 ^ m1) ^ i7_1 ; // 2

// DUV
aes_sbox sbox_inst (i0 , i1 , i2 , . . . , i7 , . . .) ;

endmodule

For the input in the maskVerif tool, the implementation is read by the Yosys [Wol]
open synthesis tool. The circuit is then mapped to Yosys’ internal gate representation
(ILANG) and subsequently flattened such that a single module is created that contains all
gates. The resulting circuit is then returned in ILANG format for which input, output
and mask signals are annotated before it is fed into maskVerif. The implementations are
validated for the probing model of Ishai et al. [ISW03] without glitches.

Table 8: SCA resistance verification results

Module Number of 1-uples Verification time Result

AddByte 95 16ms probing secure
MixColumns 315 108ms probing secure
SubByte 429 22 s probing secure

As the results in Table 8 show, all of the modules on which our entire AES-128 encryption
depends, are probing secure as intended. ShiftRows is only rewiring (readdressing) in

18 First-Order Masking with Only Two Random Bits

hardware and just a bit permutation in software, which does not influence the probing
security. With the input and output constraints for our synthesis tool, we also ensure
that the mask encoding for each byte is the same, and we can thus safely compose these
modules without creating flaws in the probing model for first-orders. However, we note
that this composition argument is only true for first-order implementations for which a
probing attacker is restricted to a single probe. This means that multivariate probes are of
no concern and thus probes occur only in a single submodule. The tables in Appendix A
show that the reuse of randomness has no influence on the output distributions of cascaded
gates, as long as the mask encoding is done with precision. Our synthesis tool creates
implementations which, by construction, ensure that the mask encoding is fixed at the
inputs and outputs of submodules. Our submodules have been formally verified for these
encodings. Therefore, combined with the fact that probes can only placed on a single
submodule, this ensures that the entire AES implementation is first-order secure.

We have proven the security of our scheme using formal verification tools and demon-
strated that randomness can almost completely be eliminated for first-order security within
the t-probing model. Apart from pushing the boundaries in terms of randomness cost, we
are therefore also testing the limits of this model, which has become the standard adversary
model for countermeasures against DPA. In the next two subsections, we demonstrate
with our new masking scheme where the t-probing model is lacking.

6.2 Horizontal Attacks
With our scheme that fixes the mask encoding of the state across the rounds of an
encryption, we need to be careful not to create a vulnerability to horizontal attacks. A
horizontal side-channel attack considers correlations between multiple samples within a
single trace, as opposed to the more common vertical side-channel attacks, which consider
the same time sample across multiple traces. For this investigation, we cannot rely on
established evaluation methods (e.g., TVLA) or verification tools since the state-of-the-art
on horizontal attacks against symmetric primitives is quite limited. We will first consider
the attacks from previous works and explain why they cannot be applied to our new
scheme. Next, we use simulated traces to investigate the success probability of a trivial
horizontal attack to recover the masks, followed by a classical CPA attack.

6.2.1 Previous Works

Horizontal attacks against public-key primitives. The literature on horizontal attacks
against public-key primitives is abundant [BJPW13b, BJPW13a, HKT15]. However, these
attacks are typically based on the assumption that the secret determines the presence
or absence of some collision(s) (e.g., between subsequent iterations in an exponentiation
algorithm). Since this situation clearly differs from ours, we will not further discuss it.

Horizontal attack against ISW A recent work investigates horizontal attacks against
a very common building block in masked implementations, i.e., the ISW multiplica-
tion [BCPZ16]. However, we will not consider such an attack in this work, since it targets
the ISW implementations when the number of shares n satisfies n > c · σ, with σ the
measurements noise. As an example, they attack a 21-share implementation. It is thus
unlikely to be applicable to our 2-share implementation.

Horizontal attacks against masked table lookups. One type of horizontal attack against
masked symmetric primitives targets implementations that compute the S-box by means
of a masked table lookup [PdHL09]. They exploit the fact that for each S-box input (i.e.,
one plaintext byte and one key byte), the table lookup is performed with multiple masks.
Hence, a trace of a single encryption consists of multiple subtraces of S-box calculations

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 19

Table 9: Percentage wrongly guessed masks after horizontal CPA on 16 subtraces

SNR 100 10 1 0.1 0.01
% wrong masks 0 0 1.885 7.411 7.501

that use the same key byte. By doing a CPA attack horizontally on these subtraces, the
key byte can be recovered. In our scheme, each key byte is only used once per encryption.
This makes a similar horizontal attack on a single trace impossible.

6.2.2 Experiments

Nevertheless, our implementation does use the same mask for every single state byte and
in every single round of AES. A normal CPA attack relies on the ability of the attacker to
make hypotheses on intermediates. In the case of AES, these hypotheses typically target
the output of an S-box S(xi ⊕ k), where xi is variable and known (in the first/last round)
and k is constant and unknown and hence, the target of the attack. In our case, the S-box
output is protected with a mask. The intermediate in the traces would be S(xi ⊕ k)⊕mi

when considered vertically, with i the index of the trace/encryption. In this case, xi is
variable and known (the plaintext), k is constant and unknown and mi is variable and
unknown, since each encryption uses a new mask. The key cannot be extracted unless
the mask for each encryption mi is known. When we consider a trace horizontally, the
S-box outputs are S(xj ⊕kj)⊕m with xj variable and unknown (state bytes) in all rounds
except the first and last, kj variable and unknown (different round keys) and m constant
and unknown. It is clear that the key cannot be extracted using a horizontal CPA attack.
However, if the constant and unknown mask m can be extracted horizontally from each
single trace, a classic vertical CPA attack using hypotheses S(xi ⊕ k)⊕mi can extract the
key bytes.

Horizontal Mask Recovery. To attack the mask within a single trace, we need to choose
an intermediate that combines the mask with variable and known data xj , i.e., the plaintext
or ciphertext bytes. This should thus give 16 or 32 subtraces to do CPA over with the
hypotheses xj ⊕m.

We create simulated traces to test this attack, consisting of the hamming weight of
each state byte after each intermediate operation. While our actual implementation is
bitsliced, our simulated traces consider bytes for simplicity. As shown in [BGRV15], the
signal-to-noise ratio (SNR) of a bitsliced implementation is lower, but it does not prevent
SCA.

For each individual trace, we consider 16 subtraces corresponding to the 16 byte-XORs
in the last AddRoundKey stage. Across these subtraces, we perform CPA to recover the
mask of that trace. At least in simulation, this attack is very successful. Table 9 shows
that even for high noise levels, only 8% of the masks are guessed incorrectly. However,
note that attacking a linear operation in practice is very difficult.

Classic CPA Once the masks have been guessed, we perform a normal vertical CPA,
using the (mostly correct) knowledge of the masks. We repeat the experiment for various
signal-to-noise ratios (SNRs) and measure the success by the average rank of the correct
key byte. Figure 1 shows that for very high SNR, the attack succeeds with only a few
thousand traces. For a more realistic SNR = 1.0, the average key rank never becomes 0
with up to 10 000 traces. For low SNR levels, the attack never succeeds.

20 First-Order Masking with Only Two Random Bits

Figure 1: Average correct key rank as a function of the number of traces in a CPA attack
followed by a horizontal mask recovery for different SNRs.

Conclusion. We performed a small investigation of the success of horizontal attacks
against our implementation with extreme mask-reuse. We used a fairly simplistic attack
because we cannot rely on state-of-the-art analysis tools. We assumed a quite powerful
adversary who can attack linear operations and showed that the reuse of masks does not
trivially introduce vulnerabilities against horizontal attacks at realistic noise levels.

6.3 Beyond the t-Probing Model
Pushing the Randomness. It was already noted by Wegener and Moradi [WM18b] that
the t-probing model does not incorporate transition leakages, which in our case of extreme
randomness reuse, are dangerous. On the one hand, having the same masks for each
bit of the state leads to transition leakages if the S-box is implemented in a serial way.
Furthermore, the reuse of the same masks in each round, has the same effect in a round-
based implementation. This example alone already shows the huge gap between theory and
practice. However, we have shown that our solution can at least obtain very competitive
performance compared to previous work, even if we double the latency with reset cycles
against transition leakage.

A more Fundamental Issue. While our scheme is an extreme example of how theoretical
security may be insufficient in practice, similar conclusions can be made for previous
works that target security in the t-probing model, even those in which randomness is
used as described in [ISW03] and never reused. Effects such as transition leakages have
been especially well studied for software by Balash et al. [BGG+14] and more recently by
Papagiannopoulos et al. [PV17] among others. The resetting and clearing of registers is a
popular solution proposed both in [WM18b] and [PV17], but incurs a very high penalty
on the latency. The authors of [BGG+14] propose to use a theoretically 2t-secure scheme
when targeting t-order security.

Conclusion. To conclude, we have shown that eliminating randomness (apart from 2
bits) is possible. We however also noted that the models currently used are not prohibitive
enough to guarantee security in practice and that theoretically secure solutions should be
superposed with additional expensive countermeasures to achieve the desired protection.
An interesting question for future work is whether the models can be adapted such that
schemes are practically secure from the start.

7 Conclusions
In this paper, we have demonstrated that first-order masking in theory does not require
more than two bits of randomness in both software and hardware. These two bits of

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 21

randomness include the initial randomness for masking of secret data as well as the so-
called online randomness that is usually required by other masking approaches to keep the
first-order probing security. We thus throw away the distinction of randomness spent on
masking the input data and the randomness spent on keeping this independence during
the computation, since it is not very meaningful for applications in practice.

We have also shown that our approach not only leads to first-order probing secure
implementations (which we verified using formal tools as well as manual verification) but
also that this approach can be automated easily.

The downside of our approach, which is more noticeable in hardware, is an increased
latency behavior due to the required control of the order in which operations are performed.
However, we want to emphasize that the main idea of this work was to demonstrate that
two bits of randomness not only pose the intuitive theoretical lower bound for first-order
masking but that this bound is achievable in theory.

Future Work Our findings not only give answers to intriguing research questions but
also lead the way to some follow-up questions.

• We demonstrated that when sacrificing latency in hardware, a lot of random bits can
be saved and therefore the costs involved with the production of randomness. At
the same time, there exists work like the low-latency masking approach of Gross et
al. [GIB18], that show that arbitrary implementations can be calculated in a securely
masked way and in a single cycle when randomness considerations are not taken
into account. A consequent next step is thus to research concepts to design masked
implementations which achieve a better trade-off regarding latency and area for a
give randomness budget.

• Another open question is if and how the introduced concepts can be extended to
higher-order masking. For first-order masking, an attacker is limited to a single
observation and thus masks can be reused in the same form and combination
at different points in the implementation. For higher-order masking, the same
combination of masks at different positions automatically lead to a violation of the
probing security. This does not mean that mask reuse is not possible but only that
more aspects need to be taken into account like the encoding of the masks at multiple
positions.

• While two random bits are enough to achieve first-order probing security, it does
not mean that it suffices to protect against first-order DPA in practice. Using less
randomness may provide a larger attack surface to horizontal attacks and most
likely also increases the signal-to-noise ratio for a DPA attacker. Also, transition
leakages become more prominent when randomness recycling is used in extremis.
The gap between theory and practice has never been more clear and also unoptimized
schemes that have been designed in the t-probing model are vulnerable in practice.
Naturally, our scheme’s almost complete elimination of randomness means that its
actual security level (e.g., in terms of required leakage traces to extract a secret) is not
the same as for an implementation that uses a lot of randomness on mask refreshing
of intermediate values. However, what is less obvious is the question whether or
not the saved randomness could be more effectively used, e.g., for additional hiding
countermeasures that lower the signal-to-noise ration by a higher extent than by
spending more randomness on masking itself. There are two different approaches
to take in the future. On the one hand, we can keep designing masking schemes in
the theoretical t-probing model, pushing the limits and reaching new boundaries.
However, further research is needed into the implementation cost of existing schemes
when combined with the extra countermeasures necessary to take them beyond the

22 First-Order Masking with Only Two Random Bits

t-probing model into practice. An alternative route is to adapt our models and
design schemes which in themselves provide the needed practical security. The next
challenge is then to push the limits in those models.

Acknowledgements.
This work has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 681402). This work has been supported by the Austrian Research Promotion Agency
(FFG) via the project IoT4CPS. Lauren De Meyer is funded by a PhD fellowship of the
Fund for Scientific Research - Flanders (FWO).

References
[BBFG18] Gilles Barthe, Sonia Belaïd, Pierre-Alain Fouque, and Benjamin Grégoire.

maskverif: a formal tool for analyzing software and hardware masked imple-
mentations. IACR Cryptology ePrint Archive, 2018:562, 2018.

[BBP+16] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Randomness complexity of private
circuits for multiplication. In EUROCRYPT (2), volume 9666 of Lecture
Notes in Computer Science, pages 616–648. Springer, 2016.

[BBP+17] Sonia Belaïd, Fabrice Benhamouda, Alain Passelègue, Emmanuel Prouff,
Adrian Thillard, and Damien Vergnaud. Private multiplication over finite
fields. In CRYPTO (3), volume 10403 of Lecture Notes in Computer Science,
pages 397–426. Springer, 2017.

[BCPZ16] Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina
Zeitoun. Horizontal side-channel attacks and countermeasures on the ISW
masking scheme. In Benedikt Gierlichs and Axel Y. Poschmann, editors,
Cryptographic Hardware and Embedded Systems - CHES 2016 - 18th Interna-
tional Conference, Santa Barbara, CA, USA, August 17-19, 2016, Proceedings,
volume 9813 of Lecture Notes in Computer Science, pages 23–39. Springer,
2016.

[BDCU17] Alex Biryukov, Daniel Dinu, Yann Le Corre, and Aleksei Udovenko. Optimal
first-order boolean masking for embedded iot devices. In CARDIS, volume
10728 of Lecture Notes in Computer Science, pages 22–41. Springer, 2017.

[BDF+17] Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire,
François-Xavier Standaert, and Pierre-Yves Strub. Parallel implementations
of masking schemes and the bounded moment leakage model. In EUROCRYPT
(1), volume 10210 of Lecture Notes in Computer Science, pages 535–566, 2017.

[BDP+] Joan Boyar, Morris Dworkin, Rene Peralta, Meltem Turan, Cagdas Calik,
and Luis Brandao. Circuit minimization work. http://www.cs.yale.edu/
homes/peralta/CircuitStuff/CMT.html.

[BFG+17] Josep Balasch, Sebastian Faust, Benedikt Gierlichs, Clara Paglialonga, and
François-Xavier Standaert. Consolidating inner product masking. In Takagi
and Peyrin [TP17], pages 724–754.

http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html
http://www.cs.yale.edu/homes/peralta/CircuitStuff/CMT.html

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 23

[BGG+14] Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and
François-Xavier Standaert. On the cost of lazy engineering for masked software
implementations. In Marc Joye and Amir Moradi, editors, Smart Card
Research and Advanced Applications - 13th International Conference, CARDIS
2014, Paris, France, November 5-7, 2014. Revised Selected Papers, volume
8968 of Lecture Notes in Computer Science, pages 64–81. Springer, 2014.

[BGI+18] Roderick Bloem, Hannes Groß, Rinat Iusupov, Bettina Könighofer, Stefan
Mangard, and Johannes Winter. Formal verification of masked hardware
implementations in the presence of glitches. In EUROCRYPT (2), volume
10821 of Lecture Notes in Computer Science, pages 321–353. Springer, 2018.

[BGN+14] Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-order threshold implementations. In ASIACRYPT (2), volume
8874 of Lecture Notes in Computer Science, pages 326–343. Springer, 2014.

[BGRV15] Josep Balasch, Benedikt Gierlichs, Oscar Reparaz, and Ingrid Verbauwhede.
Dpa, bitslicing and masking at 1 ghz. In Tim Güneysu and Helena Handschuh,
editors, Cryptographic Hardware and Embedded Systems - CHES 2015 -
17th International Workshop, Saint-Malo, France, September 13-16, 2015,
Proceedings, volume 9293 of Lecture Notes in Computer Science, pages 599–619.
Springer, 2015.

[BJPW13a] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizon-
tal and vertical side-channel attacks against secure RSA implementations. In
Ed Dawson, editor, Topics in Cryptology - CT-RSA 2013 - The Cryptogra-
phers’ Track at the RSA Conference 2013, San Francisco,CA, USA, February
25-March 1, 2013. Proceedings, volume 7779 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2013.

[BJPW13b] Aurélie Bauer, Éliane Jaulmes, Emmanuel Prouff, and Justine Wild. Horizon-
tal collision correlation attack on elliptic curves. In Tanja Lange, Kristin E.
Lauter, and Petr Lisonek, editors, Selected Areas in Cryptography - SAC 2013
- 20th International Conference, Burnaby, BC, Canada, August 14-16, 2013,
Revised Selected Papers, volume 8282 of Lecture Notes in Computer Science,
pages 553–570. Springer, 2013.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. Logic minimization tech-
niques with applications to cryptology. J. Cryptology, 26(2):280–312, 2013.

[BP12] Joan Boyar and René Peralta. A Small Depth-16 Circuit for the AES S-Box.
In SEC, volume 376 of IFIP Advances in Information and Communication
Technology, pages 287–298. Springer, 2012.

[Can05] David Canright. A very compact S-box for AES. In CHES, volume 3659 of
Lecture Notes in Computer Science, pages 441–455. Springer, 2005.

[CJRR99] Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi.
Towards sound approaches to counteract power-analysis attacks. In CRYPTO,
volume 1666 of Lecture Notes in Computer Science, pages 398–412. Springer,
1999.

[Dae17] Joan Daemen. Changing of the guards: A simple and efficient method for
achieving uniformity in threshold sharing. In Wieland Fischer and Naofumi
Homma, editors, Cryptographic Hardware and Embedded Systems - CHES
2017 - 19th International Conference, Taipei, Taiwan, September 25-28, 2017,

24 First-Order Masking with Only Two Random Bits

Proceedings, volume 10529 of Lecture Notes in Computer Science, pages
137–153. Springer, 2017.

[DDF14] Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage
models: From probing attacks to noisy leakage. In EUROCRYPT, volume
8441 of Lecture Notes in Computer Science, pages 423–440. Springer, 2014.

[dMB08] Leonardo de Moura and Nikolaj Bjørner. Z3: An efficient SMT solver. In C. R.
Ramakrishnan and Jakob Rehof, editors, TACAS 2008, Budapest, Hungary,
March 29-April 6, 2008. Proceedings, pages 337–340, Berlin, Heidelberg, 2008.
Springer Berlin Heidelberg.

[FGP+18] Sebastian Faust, Vincent Grosso, Santos Merino Del Pozo, Clara Paglialonga,
and François-Xavier Standaert. Composable masking schemes in the presence
of physical defaults & the robust probing model. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(3):89–120, 2018.

[FPS17] Sebastian Faust, Clara Paglialonga, and Tobias Schneider. Amortizing ran-
domness complexity in private circuits. In Takagi and Peyrin [TP17], pages
781–810.

[GD17] Ashrujit Ghoshal and Thomas De Cnudde. Several masked implementations
of the Boyar-Peralta AES S-box. In INDOCRYPT, volume 10698 of Lecture
Notes in Computer Science, pages 384–402. Springer, 2017.

[GIB18] Hannes Groß, Rinat Iusupov, and Roderick Bloem. Generic low-latency
masking in hardware. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2018(2):1–
21, 2018.

[GM17] Hannes Groß and Stefan Mangard. Reconciling d+ 1 masking in hardware
and software. In CHES, volume 10529 of Lecture Notes in Computer Science,
pages 115–136. Springer, 2017.

[GM18] Hannes Groß and Stefan Mangard. A unified masking approach. J. Crypto-
graphic Engineering, 8(2):109–124, 2018.

[GMK16] Hannes Groß, Stefan Mangard, and Thomas Korak. Domain-oriented masking:
Compact masked hardware implementations with arbitrary protection order.
IACR Cryptology ePrint Archive, 2016:486, 2016.

[GR17] Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking
be in software? In Jean-Sébastien Coron and Jesper Buus Nielsen, editors,
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International
Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part I, volume 10210 of
Lecture Notes in Computer Science, pages 567–597, 2017.

[HKT15] Neil Hanley, HeeSeok Kim, and Michael Tunstall. Exploiting collisions in
addition chain-based exponentiation algorithms using a single trace. In Nyberg
[Nyb15], pages 431–448.

[ISW03] Yuval Ishai, Amit Sahai, and David A. Wagner. Private circuits: Securing
hardware against probing attacks. In CRYPTO, volume 2729 of Lecture Notes
in Computer Science, pages 463–481. Springer, 2003.

[KJJ99] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In CRYPTO, volume 1666 of Lecture Notes in Computer Science, pages
388–397. Springer, 1999.

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 25

[NRR06] Svetla Nikova, Christian Rechberger, and Vincent Rijmen. Threshold imple-
mentations against side-channel attacks and glitches. In ICICS, volume 4307
of Lecture Notes in Computer Science, pages 529–545. Springer, 2006.

[NRS08] Svetla Nikova, Vincent Rijmen, and Martin Schläffer. Secure hardware
implementation of non-linear functions in the presence of glitches. In Pil Joong
Lee and Jung Hee Cheon, editors, Information Security and Cryptology -
ICISC 2008, 11th International Conference, Seoul, Korea, December 3-5,
2008, Revised Selected Papers, volume 5461 of Lecture Notes in Computer
Science, pages 218–234. Springer, 2008.

[Nyb15] Kaisa Nyberg, editor. Topics in Cryptology - CT-RSA 2015, The Cryptogra-
pher’s Track at the RSA Conference 2015, San Francisco, CA, USA, April
20-24, 2015. Proceedings, volume 9048 of Lecture Notes in Computer Science.
Springer, 2015.

[PdHL09] Jing Pan, J. I. den Hartog, and Jiqiang Lu. You cannot hide behind the mask:
Power analysis on a provably secure S-box implementation. In Heung Youl
Youm and Moti Yung, editors, Information Security Applications, 10th Inter-
national Workshop, WISA 2009, Busan, Korea, August 25-27, 2009, Revised
Selected Papers, volume 5932 of Lecture Notes in Computer Science, pages
178–192. Springer, 2009.

[PV17] Kostas Papagiannopoulos and Nikita Veshchikov. Mind the gap: Towards
secure 1st-order masking in software. In Sylvain Guilley, editor, Construc-
tive Side-Channel Analysis and Secure Design - 8th International Workshop,
COSADE 2017, Paris, France, April 13-14, 2017, Revised Selected Papers,
volume 10348 of Lecture Notes in Computer Science, pages 282–297. Springer,
2017.

[QS01] Jean-Jacques Quisquater and David Samyde. Electromagnetic analysis (EMA):
measures and counter-measures for smart cards. In E-smart, volume 2140 of
Lecture Notes in Computer Science, pages 200–210. Springer, 2001.

[RBN+15] Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid
Verbauwhede. Consolidating masking schemes. In CRYPTO (1), volume 9215
of Lecture Notes in Computer Science, pages 764–783. Springer, 2015.

[RP10] Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking
of AES. In Stefan Mangard and François-Xavier Standaert, editors, Cryp-
tographic Hardware and Embedded Systems, CHES 2010, 12th International
Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings, volume
6225 of Lecture Notes in Computer Science, pages 413–427. Springer, 2010.

[SS16] Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and M4.
In SAC, volume 10532 of Lecture Notes in Computer Science, pages 180–194.
Springer, 2016.

[Sto16] Ko Stoffelen. Instruction scheduling and register allocation on ARM Cortex-M,
2016.

[Sug19] Takeshi Sugawara. 3-share threshold implementation of AES S-box without
fresh randomness. IACR Trans. Cryptogr. Hardw. Embed. Syst., 2019(1):123–
145, 2019.

26 First-Order Masking with Only Two Random Bits

[TP17] Tsuyoshi Takagi and Thomas Peyrin, editors. Advances in Cryptology -
ASIACRYPT 2017 - 23rd International Conference on the Theory and Appli-
cations of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I, volume 10624 of Lecture Notes in Computer
Science. Springer, 2017.

[VSP17] Andrea Visconti, Chiara Valentina Schiavo, and René Peralta. Improved
upper bounds for the expected circuit complexity of dense systems of linear
equations over GF(2). IACR Cryptology ePrint Archive, 2017:194, 2017.

[WM18a] Felix Wegener and Amir Moradi. A first-order SCA resistant AES without fresh
randomness. In Junfeng Fan and Benedikt Gierlichs, editors, Constructive Side-
Channel Analysis and Secure Design - 9th International Workshop, COSADE
2018, Singapore, April 23-24, 2018, Proceedings, volume 10815 of Lecture
Notes in Computer Science, pages 245–262. Springer, 2018.

[WM18b] Felix Wegener and Amir Moradi. A note on transitional leakage when masking
AES with only two bits of randomness. IACR Cryptology ePrint Archive,
2018:1117, 2018.

[Wol] Clifford Wolf. Yosys Open SYnthesis Suite. http://www.clifford.at/
yosys/.

[WVGX15] Junwei Wang, Praveen Kumar Vadnala, Johann Großschädl, and Qiuliang
Xu. Higher-order masking in practice: A vector implementation of masked
AES for ARM NEON. In Nyberg [Nyb15], pages 181–198.

http://www.clifford.at/yosys/
http://www.clifford.at/yosys/

Hannes Gross, Ko Stoffelen, Lauren De Meyer, Martin Krenn and Stefan Mangard 27

A Manual Verification of compositions with the AND gate

Table 10: Security of the masked AND from Eqn. 7 composed with XOR

Shares Secrets TT
a0 a1 b0 b1 a b a ∧ b q0 ⊕ a0 q0 ⊕ b0 (q0 ⊕ b0)⊕ a0

0 0 0 0

0 0 0

0 0 0
0 0 1 1 0 1 1
1 1 0 0 0 1 0
1 1 1 1 0 0 1

TT Hamming Weight: 0 2 2

0 0 0 1

0 1 0

0 0 0
0 0 1 0 0 1 1
1 1 0 1 0 1 0
1 1 1 0 0 0 1

TT Hamming Weight: 4 2 2

0 1 0 0

1 0 0

1 1 1
0 1 1 1 1 0 0
1 0 0 0 1 0 1
1 0 1 1 1 1 0

TT Hamming Weight: 0 2 2

0 1 0 1

1 1 1

0 0 0
0 1 1 0 0 1 1
1 0 0 1 0 1 0
1 0 1 0 0 0 1

TT Hamming Weight: 0 2 2

Note that there is an inbalance when the output share q0 is combined with input share
a0, but not when first XORed with b0. This is normal, as the AND gate treats inputs a
and b asymmetrically. The AND gate in equation (7) reuses the mask of a (m0) and can
therefore not be freely composed with a. By switching the roles of a and b in (7), one
obtains the AND gate that can be composed with a but not with b. These composition
rules may seem complicated, but the tool of Section 3 automatically creates circuits that
satisfy them.

q′
0 =

t′
3︷ ︸︸ ︷

(q0 ∧ b0︸ ︷︷ ︸
t′

1

⊕(q0 ∧ b1 ⊕ b1)︸ ︷︷ ︸
t′

2

)⊕
t′

5︷ ︸︸ ︷
(q1 ∧ b0︸ ︷︷ ︸

t′
4

⊕[m0 ∨m1])

q′
1 = q1

(8)

28 First-Order Masking with Only Two Random Bits

Table 11: Security of the masked AND from Equation 7 composed with AND as in Eqn. 8

Shares Secrets TT
a0 a1 b0 b1 q0 q1 a b q q ∧ b t′

1 t′
2 t′

3 t′
4 t′

5 q′
0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0
0 0 1 1 0 0 0 1 1 0 1 0
1 1 0 0 1 1 0 0 0 0 1 1
1 1 1 1 1 1 1 0 1 1 0 1

TT Hamming Weight: 1 1 2 1 2 2

0 0 0 1 0 0

0 1 0 0

0 1 1 0 1 0
0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 1 1 0 0 0 0 1 1
1 1 1 0 1 1 1 0 1 1 0 1

TT Hamming Weight: 1 1 2 1 2 2

0 1 0 0 1 1

1 0 0 0

0 0 0 0 1 1
0 1 1 1 1 1 1 0 1 1 0 1
1 0 0 0 0 0 0 0 0 0 0 0
1 0 1 1 0 0 0 1 1 0 1 0

TT Hamming Weight: 1 1 2 1 2 2

0 1 0 1 0 1

1 1 1 1

0 1 1 0 1 0
0 1 1 0 0 1 0 0 0 1 0 0
1 0 0 1 1 0 0 0 0 0 1 1
1 0 1 0 1 0 1 0 1 0 0 1

TT Hamming Weight: 1 1 2 1 2 2

	Introduction
	Masking without Online Randomness
	Computation on Masked Data
	Application to Nonlinear Gates
	Construction of a New Masked AND

	Synthesis of First-Order Secure Implementations
	Masking the AES
	SubBytes
	Linear Components
	Results

	Discussion
	Comparison with Previous Work
	Randomness in Perspective
	Hardware

	Security Analysis
	Formal Verification in the t-Probing Model
	Horizontal Attacks
	Beyond the t-Probing Model

	Conclusions
	Manual Verification of compositions with the AND gate

