
Shorter Linear Straight-Line
Programs for MDS Matrices

Yet another XOR Count Paper

Thorsten Kranz1, Gregor Leander1, Ko Stoffelen2, Friedrich Wiemer1

1 Horst Görtz Institute for IT Security, Ruhr-Universität Bochum, Germany
{thorsten.kranz,gregor.leander,friedrich.wiemer}@rub.de

2 Digital Security Group, Radboud University, Nijmegen, The Netherlands
k.stoffelen@cs.ru.nl

Abstract. Recently a lot of attention is paid to the search for efficiently implementable
MDS matrices for lightweight symmetric primitives. Most previous work concentrated
on locally optimizing the multiplication with single matrix elements. Separate from
this line of work, several heuristics were developed to find shortest linear straight-
line programs. Solving this problem actually corresponds to globally optimizing
multiplications by matrices.
In this work we combine those, so far largely independent lines of work. As a result,
we achieve implementations of known, locally optimized, and new MDS matrices that
significantly outperform all implementations from the literature. Interestingly, almost
all previous locally optimized constructions behave very similar with respect to the
globally optimized implementation.
As a side effect, our work reveals the so far best implementation of the Aes Mix-
Columns operation with respect to the number of XOR operations needed.
Keywords: XOR Count · MDS · Linear Layer · Shortest Straight-Line Program · SAT

1 Introduction
Lightweight cryptography has been a major trend in symmetric cryptography for the last
years. While it is not always exactly clear what lightweight cryptography actually is,
the main goal can be summarized as very efficient cryptography. Here, the meaning of
efficiency ranges from small chip size to low latency and low energy.

As part of this line of work, several researchers started to optimize the construction of
many parts of block ciphers, with a special focus on the linear layers more recently and
even more specifically the implementation of MDS matrices. That is, linear layers with an
optimal branch number.

The first line of work focused solely on minimizing the chip area of the implementation.
This started with the block cipher Present [Bog+07] and goes over to many more designs,
such as Led [Guo+11] and the hash function Photon [GPP11], where in the latter
MDS matrices were constructed that are especially optimized for chip area by allowing a
serialized implementation. However, there seem to be only a few practical applications
where a small chip area is the only optimization goal and for those applications very good
solutions are already available by now.

Later, starting with [Kho+14], researchers focused on round-based implementations
with the goal of finding MDS constructions that minimize the number of XOR operations
needed for their implementation. Initially, the number of XOR operations needed was
bounded by the number of ones in the binary representation of the matrix.

{thorsten.kranz,gregor.leander,friedrich.wiemer}@rub.de
k.stoffelen@cs.ru.nl

2 Shorter Linear Straight-Line Programs for MDS Matrices

However, as the number of ones only gives an upper bound on the number of required
XORs, several papers started to deviate from this conceptually easier but less accurate
definition of XOR count and started to consider more efficient ways of implementing MDS
matrices. Considering an n× n MDS matrix over a finite field F2k given as M = (mi,j)
the aim was to choose the elements mi,j in such a way that implementing all of the
multiplications x 7→ mi,jx in parallel becomes as cheap as possible. In order to compute
the matrix M entirely, those partial results have to be added together, for which an
additional amount of XORs is required. It became common to denote the former cost
as the overhead and the later cost, i. e., the cost of combining the partial results as a
fixed, incompressible part. A whole series of papers [BKL16; JPS17; LS16; LW16; LW17;
Sim+15; SS16a; SS16b; SS17; ZWS17] managed to reduce the overhead.

From a different viewpoint, what happened was that parts of the matrix, namely
the cost of multiplication with the mi,j , were extensively optimized, while taking the
overall part of combining the parts as a given. That is, researchers have focused on local
optimization instead of global optimization.

Indeed the task of globally optimizing is far from trivial, and thus the local optimization
is a good step forward.

Interestingly, the task to optimize the cost of implementing the multiplication with
a relatively large, e. g., 32 × 32 binary matrix, is another extensively studied line of
research. It is known that the problem is NP-hard [BMP08; BMP13] and thus renders
quickly infeasible for increasing matrix dimension. However, quite a number of heuristic
algorithms for finding the shortest linear straight-line program, which exactly corresponds
to minimizing the number of XORs, have been proposed in the literature [BFP17; BMP08;
BMP13; BP10; FS10; FS12; Paa97; VSP17]. Those algorithms produce very competitive
results with a rather reasonable running time for arbitrary binary matrices of dimension
up to at least 32.

Thus, the natural next step in order to optimize the cost of implementing MDS matrices
is to combine those two approaches. This is exactly what we are doing in our work.

Our contribution, which we achieve by applying the heuristic algorithms to find a short
linear straight-line program to the case of MDS matrices, is threefold.

First, we use several well-locally-optimized MDS matrices from the literature and apply
the known algorithms to all of them. This is conceptually easy, with the main problem
being the implementation of those algorithms. In order to simplify this for follow-up works,
we make our implementation publicly available.

This simple application leads immediately to significant improvements. For instance,
we get an implementation of the Aes MixColumn matrix that outperforms all implemen-
tations in the literature, i. e., we use 97 XORs while the best implementation before used
103 XORs ([Jea+17]). In the case of applying it to the other constructions, we often get
an implementation using less XOR operations than what was considered fixed costs before.
That is, when (artificially) computing it, the overhead would actually be negative. This
confirms our intuition that the overhead was already very well optimized in previous work,
such that now optimizing globally is much more meaningful.

Second, we took a closer look at how the previous constructions compare when being
globally optimized. Interestingly, the previous best construction, i. e., the MDS matrix
with smallest overhead, was most of the time not the one with the fewest XORs. Thus, with
respect to the global optimum, the natural question was, which known construction actually
performs best. In order to analyze that, we did extensive experimental computations to
compare the distribution of the optimized implementation cost for the various constructions.
The, somewhat disappointing, result is that all known constructions behave basically the
same. The one remarkable exception is the subfield construction for MDS matrices, first
introduced in Whirlwind [Bar+10].

Third, we looked at finding matrices that perform exceptionally well with respect to

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 3

Table 1: Best known MDS matrices. Matrices in the lower half are involutory. The
implementations are available on GitHub.

Type Previously Best Known New Best Known

GL(4,F2)4×4 58 [JPS17; SS16b] 36* Eq. (1) (Hadamard)
GL(8,F2)4×4 106 [LW16] 72 Eq. (2) (Subfield)
(F2[x]/0x13)8×8 392 [Sim+15] 196† Eq. (3) (Cauchy)
GL(8,F2)8×8 640 [LS16] 392 Eq. (4) (Subfield)

(F2[x]/0x13)4×4 63 [JPS17] 42* [SS16b]
GL(8,F2)4×4 126 [JPS17] 84 Eq. (5) (Subfield)
(F2[x]/0x13)8×8 424 [Sim+15] 212† Eq. (6) (Vandermonde)
GL(8,F2)8×8 663 [JPS17] 424 Eq. (7) (Subfield)
* Computed with heuristic from [BMP13].
† Computed with heuristic from [Paa97].

the global optimization, i. e., which can be implemented with an exceptional low total
number of XORs. Those results are summarized in Table 1. Compared to previous known
matrices, ours improve on all – with the exception of one, where the best known matrices
is the already published matrix from [SS16b].

Finally, we like to point out two restrictions of our approach. First, we do not try
to minimize the amount of temporary registers needed for the implementation. Second,
in line with all previous constructions, we do not minimize the circuit depth. The later
restriction is out of scope of the current work but certainly an interesting task for the
future.

All our implementations are publicly available on GitHub:

https://github.com/pfasante/shorter_linear_slps_for_mds_matrices

2 Preliminaries

Before getting into details about the XOR count and previous work, let us recall some basic
notations on finite fields [LN97], their representations [War94], and on matrix constructions.

2.1 Basic Notations

F2k is the finite field with 2k elements, often also denoted as GF(2k). Up to isomorphism,
every field with 2k elements is equal to the polynomial ring over F2 modulo an irreducible
polynomial q of degree k: F2k

∼= F2[x]/q. In favor of a more compact notation, we stick
to the common habit and write a polynomial as its coefficient vector interpreted as a
hexadecimal number, i. e., x4 + x+ 1 corresponds to 0x13.

It is well known that we can represent the elements in a finite field with characteristic
2 as vectors with coefficients in F2. More precisely, there exists a vectorspace isomorphism
Φ : F2k → Fk2 . Every multiplication by an element α ∈ F2k can then be described by a
left-multiplication with a matrix Tα ∈ Fk×k2 as shown in the following diagram.

https://github.com/pfasante/shorter_linear_slps_for_mds_matrices

4 Shorter Linear Straight-Line Programs for MDS Matrices

F2k F2k

·α

Fk2 Fk2

Φ Φ−1

Tα

Tα is usually called the multiplication matrix of the element α. Given an n× n matrix
M = (αi,j) with αi,j ∈ F2k for 1 ≤ i, j ≤ n, we define B(M) := (Tαi,j

) ⊆ GL(k,F2)n×n ⊆
(Fk×k2)n×n ∼= Fnk×nk2 . Its corresponding binary nk × nk matrix is called the binary
representation. Here, GL(k,F2) denotes the general linear group, that is the group of
invertible matrices over F2 of dimension k × k.

Given a matrix M and a vector u, the Hamming weights hw(M) and hw(u) are defined
as the number of nonzero entries inM and u, respectively. In the case of a binary vector v ∈
Fnk2 , we define hwk(v) := hw(v′), where v′ ∈ (Fk2)n is the vector that has been constructed
by partitioning v into groups of k bits. Furthermore, the branch number of a matrix M
is defined as bn(M) := minu 6=0{hw(u) + hw(Mu)}. For a binary matrix B ∈ Fnk×nk2 , the
branch number for k-bit words is defined as bnk(B) := minu∈Fnk

2 \{0}{hwk(u) + hwk(Mu)}.
In the design of block ciphers, MDS matrices play an important role.

Definition 1. An n× n matrix M is MDS if and only if bn(M) = n+ 1.

It has been shown, that a matrix is MDS if and only if all its square submatrices are
invertible [MS77, page 321, Theorem 8]. MDS matrices do not exist for every choice of
n, k. The exact parameters for which MDS matrices do or do not exist are investigated
in the context of the famous MDS conjecture which was initiated in [Seg55]. For binary
matrices, we need to modify Definition 1.

Definition 2. A binary matrix B ∈ Fnk×nk2 is MDS for k-bit words if and only if
bnk(M) = n+ 1.

MDS matrices have a common application in linear layers of block ciphers, due to the
wide trail strategy proposed for the Aes, see [Dae95; DR02]. We typically deal with n× n
MDS matrices over Fk2 respectively binary Fnk×nk2 matrices that are MDS for k-bit words
where k ∈ {4, 8} is the size of the S-box. In either case, when we call a matrix MDS, the
size of k will always be clear from the context when not explicitly mentioned.

It is easy to see that, if M ∈ Fn×n2k is MDS, then also B(M) is MDS for k-bit words.
On the other hand, there might also exist binary MDS matrices for k-bit words that have
no according representation over Fk2 .

Other, non-MDS matrices are also common in cipher designs. To name only a few
examples: Present’s permutation matrix [Bog+07], lightweight implementable matrices
from Prince [Bor+12], or Pride [Alb+14], or the recently used almost-MDS matrices,
e. g. in Midori [Ban+15], or Qarma [Ava17].

2.2 MDS Constructions
Cauchy and Vandermonde matrices are two famous constructions for building MDS
matrices. They have the advantage of being provably MDS.

However, as known from the MDS conjecture, for some parameter choices, MDS
matrices are unlikely to exist. E. g., we do not know how to construct MDS matrices over
F22 of dimension 4× 4.

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 5

Definition 3 (Cauchy matrix). Given two disjoint sets of n elements of a field F2k ,
A = {a1, . . . , an}, and B = {b1, . . . , bn}. Then the matrix

M = cauchy(a1, . . . , an, b1, . . . , bn) :=

1

a1−b1
1

a1−b2
· · · 1

a1−bn1
a2−b1

1
a2−b2

· · · 1
a2−bn...

1
an−b1

1
an−b2

· · · 1
an−bn

is a Cauchy matrix.

Every Cauchy matrix is MDS, e. g. see [GR13, Lemma 1].

Definition 4 (Vandermonde matrix). Given an n-tuple (a1, . . . , an) with ai ∈ F2k . Then
the matrix

M = vandermonde(a1, . . . , an) :=

a0

1 a1
1 · · · an−1

1
a0

2 a1
2 · · · an−1

2
...
a0
n a1

n · · · an−1
n

is a Vandermonde matrix.

Given two Vandermonde matrices A and B with pairwise different ai, bj , then the
matrix AB−1 is MDS, see [LF04, Theorem 2]. Furthermore, if ai = bi + ∆ for all i and an
arbitrary nonzero ∆, then the matrix AB−1 is also involutory [LF04; Saj+12].

2.3 Specially Structured Matrix Constructions
Other constructions, such as circulant, Hadamard, or Toeplitz, are not per se MDS, but
they have the advantage that they greatly reduce the search space by restricting the
number of submatrices that appear in the matrix. For circulant matrices, this was e. g.
already noted by Daemen et al. [DKR97].

In order to generate a random MDS matrix with one of these constructions, we can
choose random elements for the matrix and then check for the MDS condition. Because of
many repeated submatrices, the probability to find an MDS matrix is much higher then
for a fully random matrix.

Definition 5 (Circulant matrices). A right circulant n × n matrix is defined by the
elements of its first row a1, . . . , an as

M = circr(a1, . . . , an) :=

a1 a2 · · · an
an a1 · · · an−1
...
a2 · · · an a1

 .

A left circulant n× n matrix is analogously defined as

M = circ`(a1, . . . , an) :=

a1 a2 · · · an
a2 a3 · · · a1
...
an a1 · · · an−1

 .

While in the literature circulant matrices are almost always right circulant, left circulant
matrices are equally fine for cryptographic applications. The often noted advantage of
right circulant matrices, the ability to implement the multiplication serialized and with

6 Shorter Linear Straight-Line Programs for MDS Matrices

shifts in order to save XORs, of course also applies to left circulant matrices. Additionally,
it is easy to see that bn(circr(a1, . . . , an)) = bn(circ`(a1, . . . , an)), since the matrices only
differ in a permutation of the rows. Thus, for cryptographic purposes, it does not matter if
a matrix is right circulant or left circulant and we will therefore simply talk about circulant
matrices in general. The common practice of restricting the matrix entries to elements
from a finite field comes with the problem that circulant involutory MDS matrices over
finite fields do not exist, see [JA09]. But Li and Wang [LW16] showed that this can be
avoided by taking the matrix elements from the general linear group.

Definition 6 (Hadamard matrix). A (finite field) Hadamard matrix M is of the form

M =
(
M1 M2
M2 M1

)
,

where M1 and M2 are either Hadamard matrices themselves or one-dimensional.

The biggest advantage of Hadamard matrices is the possibility to construct involutory
matrices. If we choose the elements of our matrix such that the first row sums to one, the
resulting matrix is involutory, see [GR13].

Definition 7 (Toeplitz matrix). An n× n Toeplitz matrix M is defined by the elements
of its first row a1, . . . , an and its first column a1, an+1, . . . , a2n−1 as

M = toep(a1, . . . , an, an+1, . . . , a2n−1) :=

a1 a2 · · · an

an+1 a1
. . . an−1

...
a2n−1 a2n−2 · · · a1

 ,

that is, every element defines one minor diagonal of the matrix.

To the best of our knowledge, Sarkar and Syed [SS16b] were the first to scrutinize
Toeplitz matrices in the context of XOR counts.

Finally, the subfield construction was first used to construct lightweight linear layers in
the Whirlwind hash function [Bar+10, Section 2.2.2] and later used in [Alb+14; Cho+12;
JPS17; Kho+14; Sim+15]. As its name suggests, the subfield construction was originally
defined only for matrices over finite fields: a matrix with coefficients in F2k can be used to
construct a matrix with coefficients in F22k . Here, we use the natural extension to binary
matrices.

Definition 8 (Subfield matrix). Given an n× n matrix M with entries mi,j ∈ Fk×k2 . The
subfield construction of M is then an n× n matrix M ′ with

M ′ = subfield(M) :=
(
m′i,j

)
,

where each m′i,j =
(
mi,j 0

0 mi,j

)
∈ F2k×2k

2 .

This definition is straightforward to extend for more than one copy of the matrix M .
The subfield construction has some very useful properties, see [Bar+10; JPS17; Kho+14;

Sim+15].

Lemma 1. For the subfield construction, the following properties hold:

1. Let M be a matrix that can be implemented with m XORs. Then the matrix M ′ =
subfield(M) can be implemented with 2m XORs.

2. Let M be an MDS matrix for k-bit words. Then M ′ = subfield(M) is MDS for 2k-bit
words.

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 7

3. Let M be an involutory matrix. Then M ′ = subfield(M) is also involutory.

Proof.

(1) Due to the special structure of the subfield construction, we can split the multiplica-
tion by M ′ into two multiplications by M , each on one half of the input bits. Hence,
the XOR count doubles.

(2) We want to show that hw2k(u) + hw2k(M ′u) ≥ n + 1 for every nonzero u. We
split u into two parts u1 and u2, each containing alternating halves of the elements
of u. As described in [Kho+14], the multiplication of M ′ and u is the same as
the multiplication of the original matrix M and each of the two ui, if we combine
the results according to our splitting. Let t = hw2k(u) > 0. Then, we have
t ≥ hwk(u1) and t ≥ hwk(u2). Without loss of generality, let hwk(u1) > 0. Since
M is MDS for k-bit words, we have hwk(Mu1) ≥ n− t+ 1 which directly leads to
hw2k(M ′u) ≥ n− t+ 1.

(3) As in the above proof, this property is straightforward to see. We want to show
that M ′M ′u = u for any vector u. Again, we split u into two parts, u1 and u2,
each containing alternating halves of the elements of u. Now, we need to show that
MMui = ui. This trivially holds, as M is involutory.

With respect to cryptographic designs, this means the following: assume we have a
linear straight-line program with m XORs for an (involutory) n×n MDS matrix and k-bit
S-boxes. We can then easily construct a linear straight-line program with 2m XORs for an
(involutory) n× n MDS matrix and 2k-bit S-boxes.

3 Related Work
In 2014, [Kho+14] introduced the notion of XOR count as a metric to compare the area-
efficiency of matrix multiplications. Following that, there has been a lot of work [BKL16;
JPS17; LS16; LW16; LW17; Sim+15; SS16a; SS16b; SS17; ZWS17] on finding MDS
matrices that can be implemented with as few XOR gates as possible in the round-based
scenario.

In an independent line of research, the problem of implementing binary matrix multi-
plications with as few XORs as possible was extensively studied [BFP17; BMP08; BMP13;
BP10; FS10; FS12; Paa97; VSP17].

In this section, we depict these two fields of research and show how they can be
combined.

3.1 Local Optimizations
Let us first recall the scenario. In a round-based implementation the matrix is implemented
as a fully unrolled circuit. Thus, in the XOR count metric, the goal is to find a matrix that
can be implemented with a circuit of as few (2-input) XOR gates as possible. Of course,
the matrix has to fulfill some criteria, typically it is MDS. For finding matrices with a low
XOR count, the question of how to create a circuit for a given matrix must be answered.

The usual way for finding an implementation of n×n matrices over F2k was introduced
in [Kho+14]. As each of the n output components of a matrix-vector multiplication is
computed as a sum over n products, the implementation is divided into two parts. Namely
the single multiplications on the one hand and addition of the products on the other hand.
As F2k

∼= Fk2 , an addition of two elements from Fk2 requires k XORs and thus adding up

8 Shorter Linear Straight-Line Programs for MDS Matrices

the products for all rows requires n(n− 1)k XORs in the case of an MDS matrix where
every element is nonzero. If one implements the matrix like this, these n(n− 1)k XORs
are a fixed part that cannot be changed. Accordingly, many papers [BKL16; JPS17; LS16;
LW16; ZWS17] just state the number of XORs for the single field multiplications when
presenting results. The other costs are regarded as inevitable. The goal then boils down
to constructing matrices with elements for which multiplication can be implemented with
few XORs. Thus, the original goal of finding a global implementation for the matrix is
approached by locally looking at the single matrix elements.

To count the number of XORs for implementing a single multiplication with an element
α ∈ F2k , the multiplication matrix Tα ∈ Fk×k2 is considered. Such a matrix can be
implemented in a straightforward way with hw(Tα) − k XORs by simply implementing
every XOR of the output components. We call this the naive implementation of a matrix
and when talking about the naive XOR count of a matrix, we mean the hw(Tα)− k XORs
required for the naive implementation. In [JPS17], this is called d-XOR. It is the easiest
and most frequently used method of counting XORs. Of course, in the same way we
can also count the XORs of other matrices over Fk×k2 , i. e., also matrices that were not
originally defined over finite fields.

For improving the XOR count of the single multiplications, two methods have been
introduced. First, if the matrix is defined over some finite field, one can consider differ-
ent field representations that lead to different multiplication matrices with potentially
different Hamming weights, see [BKL16; Sim+15; SS16a]. Second, by reusing interme-
diate results, a k × k binary matrix might be implemented with less than hw(M) − k
XORs, see [BKL16; JPS17]. In [JPS17], this is called s-XOR. The according definitions
from [JPS17] and [BKL16] require that all operations must be carried out on the input
registers. That is, in contrast to the naive XOR count, no temporary registers were allowed.
However, as we consider round-based hardware implementations, there is no need to avoid
temporary registers since these are merely wires between gates.

Nowadays, the XOR count of implementations is mainly dominated by the n(n− 1)k
XORs for putting together the locally optimized multiplications. Lastly, we seem to hit
a threshold and new results often improve existing results only by very few XORs. The
next natural step is to shift the focus from local optimization of the single elements to the
global optimization of the whole matrix. This was also formulated formulated as future
work in [JPS17]. As described in Section 2, we can use the binary representation to write
an n× n matrix over F2k as a binary nk × nk matrix. First we note, that the naive XOR
count of the binary representation is exactly the naive XOR count of implementing each
element multiplication and finally adding the results. But if we look at the optimization
technique of reusing intermediate results for the whole nk× nk matrix, we now have many
more degrees of freedom. For the MixColumn matrix there already exists some work that
goes beyond local optimization. An implementation with 108 XORs has been presented
in [BBR16a; BBR16b; Sat+01] and an implementation with 103 XORs in [Jea+17]. A first
step to a global optimization algorithm was done in [Zha+16]. However, their heuristic
did not yield very good results and they finally had to go back to optimizing submatrices.

Interestingly, much better algorithms for exactly this problem are already known from
a different line of research.

3.2 Global Optimizations
Implementing binary matrices with as few XOR operations as possible is also known
as the problem of finding the shortest linear straight-line program [BMP13; FS10] over
the finite field with two elements. Although this problem is NP-hard [BMP08; BMP13],
attempts have been made to find exact solutions for the minimum number of XORs. Fuhs
and Schneider-Kamp [FS10; FS12] suggested to reduce the problem to satisfiability of
Boolean logic. They presented a general encoding scheme for deciding if a matrix can be

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 9

implemented with a certain number of XORs. Now, for finding the optimal implementation,
they repeatedly use SAT solvers for a decreasing number of XORs. Then, when they know
that a matrix can be implemented with ` XORs, but cannot be implemented with `− 1
XORs, they are able to present ` as the optimal XOR count. They used this technique to
search for the minimum number of XORs necessary to compute a binary matrix of size
21× 8, which is the first linear part of the AES S-box, when it is decomposed into two
linear parts and a minimal non-linear core. While it worked to find a solution with 23
XORs and to show that no solution with 20 XORs exists, it turned out to be infeasible to
prove that a solution with 22 XORs does not exist and that 23 is therefore the minimum.
In general, this approach quickly becomes infeasible for larger matrices. Stoffelen [Sto16]
applied it successfully to a small 7 × 7 matrix, but did not manage to find a provably
minimal solution with a specific matrix of size 19× 5. However, there do exist heuristics
to efficiently find short linear straight-line programs also for larger binary matrices.

Back in 1997, Paar [Paa97] studied how to optimize the arithmetic used by Reed-
Solomon encoders. Essentially, this boils down to reducing the number of XORs that are
necessary for a constant multiplier over the field F2k . Paar described two algorithms that
find a local optimum. Intuitively, the idea of the algorithms is to iteratively eliminate
common subexpressions. Let Tα be the multiplication matrix, to be applied to a variable
field element x = (x1, . . . , xk) ∈ Fk2 . The first algorithm for computing Tαx, denoted
Paar1 in the rest of this work, finds a pair (i, j), with i 6= j, where the bitwise AND
between columns i and j of Tα has the highest Hamming weight. In other words, it finds a
pair (xi, xj) that occurs most frequently as subexpression in the output bits of Tαx. The
XOR between those is then computed, and M is updated accordingly, with xi + xj as
newly available variable. This is repeated until there are no common subexpressions left.

The second algorithm, denoted Paar2, is similar, but differs when multiple pairs are
equally common. Instead of just taking the first pair, it recursively tries all of them. The
algorithm is therefore much slower, but can yield slightly improved results. Compared to
the naive XOR count, Paar noted an average reduction in the number of XORs of 17.5%
for matrices over F24 and 40% for matrices over F28 .

In 2009, Bernstein [Ber09] presented an algorithm for efficiently implementing linear
maps modulo 2. Based on this and on [Paa97], a new algorithm was presented in [BC14].
However, the algorithms from [BC14; Ber09] have a different framework in mind and yield
a higher number of XORs compared to [Paa97].

Paar’s algorithms lead to so-called cancellation-free programs. This means that for
every XOR operation u+v, none of the input bit variables xi occurs in both u and v. Thus,
the possibility that two variables cancel each other out is never taken into consideration,
while this may in fact yield a more efficient solution in terms of the total number of XORs.
In 2008, Boyar et al. [BMP08] showed that cancellation-free techniques can often not be
expected to yield optimal solutions for non-trivial inputs. They also showed that, even
under the restriction to cancellation-free programs, the problem of finding an optimal
program is NP-complete.

Around 2010, Boyar and Peralta [BP10] came up with a heuristic that is not cancellation-
free and that improved on Paar’s algorithms in most scenarios. Their idea was to keep
track of a distance vector that contains, for each targeted expression of an output bit,
the minimum number of additions of the already computed intermediate values that are
necessary to obtain that target. To decide which values will be added, the pair that
minimizes the sum of new distances is picked. If there is a tie, the pair that maximizes the
Euclidean norm of the new distances is chosen. Additionally, if the addition of two values
immediately leads to a targeted output, this can always be done without searching further.
This algorithm works very well in practice, although it is slower compared to Paar1.

Next to using the Euclidean norm as tie breaker, they also experimented with alternative
criteria. For example, choosing the pair that maximizes the Euclidean norm minus the

10 Shorter Linear Straight-Line Programs for MDS Matrices

largest distance, or choosing the pair that maximizes the Euclidean norm minus the
difference between the two largest distances. The results were then actually very similar.
Another tie-breaking method is to flip a coin and choose a pair randomly. The algorithm
is now no longer deterministic and can be run multiple times. The lowest result can then
be used. This performed slightly better, but of course processing again takes longer.

The results of [BMP08] and [BP10] were later improved and published in [BMP13].
In early 2017, Visconti et al. [VSP17] explored the special case where the binary matrix

is dense. They improved the heuristic on average for dense matrices by first computing a
common path, an intermediate value that contains most variables. The original algorithm
is then run starting from this common path.

At BFA 2017, Boyar et al. [BFP17] presented an improvement that simultaneously
reduces the number of XORs and the depth of the resulting circuit.

We refer to this family of heuristics [BFP17; BMP08; BMP13; BP10; VSP17] as the
BP heuristics.

4 Results
Using the techniques described above, we now give optimized XOR counts and imple-
mentations of published matrices. Next, we analyze the statistical behavior of matrix
constructions. Finally we summarize the to date best known matrices.

4.1 Improved Implementations of Matrices
Using the heuristic methods that are described in the previous section, we can easily
and significantly reduce the XOR counts for many matrices that have been used in the
literature. The running times for the optimizations are in the range of seconds to minutes.
All corresponding implementations are available in the GitHub repository. Table 2 lists
results for matrices that have been suggested in previous works where it was an explicit goal
to find a lightweight MDS matrix. While the constructions themselves will be compared
in Section 4.2, this table deals with the suggested instances.

A number of issues arise from this that are worth highlighting. First of all, it should be
noted that without any exception, the XOR count for every matrix could be reduced with
little effort. Second, it turns out that there are many cases where the n(n− 1)k XORs for
summing the products for all rows is not even a correct lower bound. In fact, all the 4× 4
matrices over GL(4,F2) that we studied can be implemented in at most 48 XORs.

What may be more interesting, is whether the XOR count as it was used previously
is in fact a good predictor for the actual implementation cost as given by the heuristical
methods. Here we see that there are some differences. For example, [LW16]’s circulant
4 × 4 matrices over GL(8,F2) first compared very favorably, but we now find that the
subfield matrix of [JPS17] requires fewer XORs.

Regarding involutory matrices, it was typically the case that there was an extra
cost involved to meet this additional criterion. However, the heuristics sometimes find
implementations with even fewer XORs than the non-involutory matrix that was suggested.
See for example the matrices of [SS16b] in the table.

Aside from these matrices, we also looked at MDS matrices that are used by various
ciphers and hash functions. Table 3 lists their results. Not all MDS matrices that are
used in ciphers are incorporated here. In particular, Led [Guo+11], Photon [GPP11],
and Primates [And+14] use efficient serialized MDS matrices. Comparing these to our
“unrolled” implementations would be somewhat unfair.

The implementation of the MDS matrix used in Aes with 97 XORs is, to the best
of our knowledge, the most efficient implementation so far and improves on the previous
implementation of 103 XORs, reported by [Jea+17]. As a side note, cancellations do occur

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 11

in this implementation, we thus conjecture that such a low XOR count is not possible with
cancellation-free programs.

4.2 Statistical Analysis
Several constructions for building MDS matrices are known. But it is not clear which one
is the best when we want to construct matrices with a low XOR count. In this section,
we present experimental results on different constructions and draw conclusions for the
designer. We also examine the correlation between naive and heuristically improved XOR
counts. When designing MDS matrices with a low XOR count, we are faced with two
major questions. First, which construction is preferable? Our intuition in this case is, a
better construction has better statistical properties, compared to an inferior construction.
We are aware that the statistical behavior of a construction might not be very important
for a designer who only looks for a single, very good instance. Nevertheless we use this
as a first benchmark. Second, is it a good approach to choose the matrices as sparse as
possible? In order to compare the listed constructions, we construct random instances of
each and then analyze them with statistical means.

Building Cauchy and Vandermonde matrices is straightforward as we only need to choose
the defining elements randomly from the underlying field. For the other constructions, we
use the following backtracking method to build random MDS constructions of dimension
4× 4. Choose the new random elements from GL(k,F2) that are needed for the matrix
construction in a step-by-step manner. In each step, construct all new square submatrices.
If any of these is not invertible, discard the chosen element and try a new one. In the case
that no more elements are left, go one step back and replace that element with a new one,
then again check the according square submatrices, and so on. Eventually, we end up with
an MDS matrix because we iteratively checked that every square submatrix is invertible.
The method is also trivially derandomizable, by not choosing the elements randomly, but
simply enumerating them in any determined order.

Apart from applying this method to the above mentioned constructions, we can also
use it to construct an arbitrary, i. e. unstructured, matrix that is simply defined by its 16
elements. This approach was already described in [JPS17].

In this manner, we generated 1 000 matrices for each construction and computed the
distributions for the naive XOR count, the optimized XOR count of Paar1, and BP.
Table 4 lists the statistical parameters of the resulting distributions and Fig. 1 depicts
them (the sample size N is the same for Table 4 and Figs. 1, 2 and 3 to 6).

The most obvious characteristic of the statistical distributions is that the means µ
do not differ much for all randomized constructions. The variance σ2 on the contrary
differs much more. This is most noticeable for the naive XOR count, while the differences
get much smaller when the XOR count is optimized with the Paar1 or BP heuristic.
One might think that the construction with the lowest optimized average XOR count,
which is for matrices over GL(4,F2) the arbitrary construction with enumerated elements,
yields the best results. However, the best matrix we could find for these dimension was
a Hadamard matrix. An explanation for this might be the higher variance that leads to
some particularly bad and some particularly good results.

The graphs in Fig. 1 convey a similar hypothesis. Looking only at the naive XOR count,
we can notice some differences. For example circulant matrices seem to give better results
than, e. g., Hadamard matrices. Additionally, the naive XOR count increases step-wise as
not every possible count occurs. But when optimizing the XOR count, the distributions
get smoother and more similar.

We conclude that all constructions give similarly good matrices when we are searching
for the matrix with the lowest XOR count, with one important exception. For randomly
generated matrices the XOR count increases by a factor of four, if we double the parameter
k. Table 4 covers this for Cauchy and Vandermonde matrices. We do not compute the

12 Shorter Linear Straight-Line Programs for MDS Matrices

Table 2: Comparison of 4× 4 and 8× 8 MDS matrices over GL(4,F2) and GL(8,F2).
Matrix Naive Literature Paar1 Paar2 BP

4× 4 matrices over GL(4,F2)

[Sim+15] (Hadamard) 68 20 + 48 50 48* 48
[LS16] (Circulant) 60 12 + 48 49 46* 44
[LW16] (Circulant)† 60 12 + 48 48 47* 44
[BKL16] (Circulant)† 64 12 + 48 48 47 42
[SS16b] (Toeplitz) 58 10 + 48 46 45* 43
[JPS17] 61 10 + 48 48 47 43

[Sim+15] (Hadamard, Involutory) 72 24 + 48 52 48* 48
[LW16] (Hadamard, Involutory) 72 24 + 48 51 48* 48
[SS16b] (Involutory) 64 16 + 48 50 48 42
[JPS17] (Involutory) 68 15 + 48 51 47* 47

4× 4 matrices over GL(8,F2)

[Sim+15] (Subfield) 136 40 + 96 100 98* 100
[LS16] (Circulant) 128 32 + 96 116 116 112
[LW16] 106 10 + 96 102 102 102
[BKL16] (Circulant) 136 24 + 96 116 112* 110
[SS16b] (Toeplitz) 123 27 + 96 110 108 107
[JPS17] (Subfield) 122 20 + 96 96 95* 86

[Sim+15] (Subfield, Involutory) 144 48 + 96 104 101* 100
[LW16] (Hadamard, Involutory) 136 40 + 96 101 97* 91
[SS16b] (Involutory) 160 64 + 96 110 109* 100
[JPS17] (Subfield, Involutory) 136 30 + 96 102 100* 91

8× 8 matrices over GL(4,F2)

[Sim+15] (Hadamard) 432 168 + 2241 210 209* 194
[SS17] (Toeplitz) 410 170 + 224 212 212* 204

[Sim+15] (Hadamard, Involutory) 512 200 + 2241 222 222* 217

8× 8 matrices over GL(8,F2)

[Sim+15] (Hadamard) 768 256 + 4481 474 — 467
[LS16] (Circulant) 688 192 + 4481 464 — 447
[BKL16] (Circulant) 784 208 + 4481 506 — 498
[SS17] (Toeplitz) 680 232 + 448 447 — 438

[Sim+15] (Hadamard, Involutory) 816 320 + 4481 430 — 428
[JPS17] (Hadamard, Involutory) 1152 288 + 448 620 — 599
* Stopped algorithm after three hours runtime.
† The authors of [BKL16; LW16] did not only give one matrix, but instead whole
classes of MDS matrices. For [BKL16], we chose the canonical candidate from its
class. For [LW16], we chose the matrix presented as an example in the paper.

1 Reported by [JPS17].

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 13

Table 3: Matrices used in ciphers or hash functions. Note that matrices in the lower part
of the table, marked with ‖, are not MDS. Additionally these matrices are commonly not
a target for “XOR count”-based implementation optimizations, as they are per se very
efficiently implementable.

Cipher Type Naive Literature Paar1 Paar2 BP

Aes [DR02]‡ (Circulant) (F2[x]/0x11b)4×4 152 7 + 961 108 108* 97†

Anubis [BRa] (Hadamard, Involutory) (F2[x]/0x11d)4×4 184 20 + 962 122 121* 113
Clefia M0 [Shi+07] (Hadamard) (F2[x]/0x11d)4×4 184 —5 121 121* 106
Clefia M1 [Shi+07] (Hadamard) (F2[x]/0x11d)4×4 208 —5 121 121* 111
Fox mu4 [JV04] (F2[x]/0x11b)4×4 219 —5 144 143* 137
Twofish [Sch+98] (F2[x]/0x169)4×4 327 —5 151 149* 129

Fox mu8 [JV04] (F2[x]/0x11b)8×8 1257 —5 611 — 594
Grøstl [Gau+] (Circulant) (F2[x]/0x11b)8×8 1112 504 + 4482 493 — 475
Khazad [BRb] (Hadamard, Involutory) (F2[x]/0x11d)8×8 1232 584 + 4482 488 — 507
Whirlpool [BRc]§ (Circulant) (F2[x]/0x11d)8×8 840 304 + 4482 481 — 465

Joltik [JNP14] (Hadamard, Involutory) (F2[x]/0x13)4×4 72 20 + 482 52 48 48
SmallScale Aes [CMR05] (Circulant) (F2[x]/0x13)4×4 72 —5 54 54 47

Whirlwind M0 [Bar+10] (Hadamard, Subfield) (F2[x]/0x13)8×8 488 200 + 2242 218 218* 212
Whirlwind M1 [Bar+10] (Hadamard, Subfield) (F2[x]/0x13)8×8 536 200 + 2242 246 244* 235

Qarma128 [Ava17]‖ (Circulant) (F2[x]/0x101)4×4 64 —5 48 48 48

Aria [Kwo+03]‖ (Involutory) (F2)128×128 768 4803 416 — —
Midori [Ban+15]‖,¶ (Circulant) (F24)4×4 32 —5 24 24 24
Prince M̂0, M̂1 [Bor+12]‖ (F2)16×16 32 —5 24 24 24
Pride L0–L3 [Alb+14]‖ (F2)16×16 32 —5 24 24 24
Qarma64 [Ava17]‖ (Circulant) (F2[x]/0x11)4×4 32 —5 24 24 24
Skinny64 [Bei+16]‖ (F24)4×4 16 124 12 12 12
* Stopped algorithm after three hours runtime.
† For the implementation see our GitHub repository.
‡ Also used in other primitives, e. g. its predecessor Square [DKR97], and Mugi [Wat+02].
§ Also used in Maelstrom [FBR06].
¶ Also used in other ciphers, e. g. Mantis [Bei+16], and Fides [Bil+13].
‖ Not an MDS matrix.
1 Reported by [Jea+17].
2 Reported by [JPS17].
3 Reported by [Bir+04].
4 Reported by the designers.
5 We are not aware of any reported results for this matrix.

14 Shorter Linear Straight-Line Programs for MDS Matrices

Table 4: Distributions for differently optimized XOR counts. By N we denote the sample
size, µ is the mean, and σ2 the variance.

Naive Paar1 BP
Construction N µ σ2 µ σ2 µ σ2

4× 4 matrices over GL(4,F2)

Cauchy 1 000 120.7 77.3 62.9 11.0 53.1 4.0
Circulant 1 000 111.8 117.1 60.4 19.2 52.1 7.1
Hadamard 1 000 117.5 99.6 60.2 17.8 52.4 6.9
Toeplitz 1 000 112.8 39.9 59.9 7.4 51.3 3.9
Vandermonde 1 000 120.6 87.6 62.2 8.1 52.9 3.1

enumerated 4× 4 matrices over GL(4,F2)

Circulant 1 000 82.9 53.0 54.9 13.5 50.1 6.7
Hadamard 1 000 102.1 76.0 56.7 20.6 50.6 8.0
Toeplitz 1 000 86.1 43.9 55.3 8.3 49.4 3.9
Arbitrary 1 000 80.5 8.3 49.7 3.2 44.5 1.8

4× 4 matrices over GL(8,F2)

Cauchy 1 000 454.1 467.2 215.1 39.6 — —
Vandermonde 1 000 487.3 597.4 220.2 44.3 — —

4× 4 subfield matrices over GL(4,F2)

Cauchy 1 000 241.1 312.1 125.8 44.2 — —
Vandermonde 1 000 240.6 452.8 121.8 47.1 — —

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 15

40 60 80 100 120 140 160
Naive XOR count

Cauchy
Circulant

Circulant (enum.)
Hadamard

Hadamard (enum.)
Toeplitz

Toeplitz (enum.)
Vandermonde

Arbitrary (enum.)

35 40 45 50 55 60 65 70 75 80 85
Paar1 XOR count

Cauchy
Circulant

Circulant (enum.)
Hadamard

Hadamard (enum.)
Toeplitz

Toeplitz (enum.)
Vandermonde

Arbitrary (enum.)

35 40 45 50 55 60 65 70 75 80 85
BP XOR count

Cauchy
Circulant

Circulant (enum.)
Hadamard

Hadamard (enum.)
Toeplitz

Toeplitz (enum.)
Vandermonde

Arbitrary (enum.)

Figure 1: XOR count distributions for 4× 4 MDS matrix constructions over GL(4,F2).

16 Shorter Linear Straight-Line Programs for MDS Matrices

65 70 75 80 85 90 95 100 105 110 115 12035

40

45

50

55

60

Figure 2: Correlations between naive (x-axis) and BP (y-axis) XOR counts for enumerated
Hadamard matrices.

statistical properties for Circulant, Hadamard and Toeplitz matrices with elements of
GL(8,F2), as the probability to find a random MDS instance for these constructions is
quite low. Thus, generating enough instances for a meaningful statistical comparison is
computationally tough and – as we deduce from a much smaller sample size – the statistical
behavior looks very similar to that of the Cauchy and Vandermonde matrices. Instead, and
as already mentioned in Lemma 1, the subfield construction has a much more interesting
behavior. It simply doubles the XOR count. The lower half of Table 4 confirms this
behavior.

Thus, when it is computationally infeasible to exhaustively search through all possible
matrices, it seems to be a very good strategy to use the subfield construction with the
best known results from smaller dimensions. This conclusion is confirmed by the fact that
our best results for matrices over GL(8,F2) are always subfield constructions based on
matrices over GL(4,F2).

Next, we want to approach the question if choosing MDS matrices with low Hamming
weight entries is a good approach for finding low XOR count implementations. To give
a first intuition of the correlation between naive and optimized XOR count, we plot the
naive XOR count against the optimized one. For one exemplary plot see Fig. 2, which
corresponds to the construction that we used to find the best 4× 4 MDS matrix for k = 4.
The remaining plots are in the appendix, see Figs. 3 to 6.

In Fig. 2 one can see that several options can occur. While there is a general tendency
of higher naive XOR counts leading to higher optimized XOR counts, the contrary is
also possible. For example, there are matrices which have a low naive XOR count (left
in the figure), while still having a somewhat high optimized XOR count (top part of the
figure). But there are also matrices where a higher naive XOR count results in a much
better optimized XOR count. The consequence is that we cannot restrict ourselves to very
sparse matrices when searching for the best XOR count, but also have to take more dense
matrices into account. A possible explanation for this behavior is that the heuristics have
more possibilities for optimizations, when the matrix is not sparse.

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 17

4.3 Best results
Let us conclude by specifying the currently best MDS matrices. The notationMn,k denotes
an n × n matrix with entries from GL(k,F2), an involutory matrix is labeled with the
superscript i. Table 1 covers non-involutory and involutory matrices of dimension 4× 4
and 8× 8 over GL(4,F2) and GL(8,F2). M8,4 and M i

8,4 are defined over F2[x]/0x13.
The matrices mentioned there are the following:

M4,4 = hadamard(
(

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

)
,

(
0 0 1 1
1 0 0 1
1 1 0 0
0 1 0 0

)
,

(
1 1 0 1
1 1 0 0
0 1 0 1
0 0 1 0

)
,

(
1 1 0 0
0 1 0 1
1 0 1 1
0 0 0 1

)
) (1)

M4,8 = subfield(M4,4) (2)

M8,4 = cauchy
(
x3+x2,x3,x3+x+1,x+1,0,x3+x2+x+1,x2,x2+x+1,

1,x2+1,x3+x2+x,x3+1,x3+x2+1,x2+x,x3+x,x

)
(3)

M8,8 = subfield(M8,4) (4)
M i

4,8 is the subfield construction applied to [SS16b, Example 3] (5)

M i
8,4 = vandermonde

(
x3+x+1,x+1,x3+x2+x,x3+x2+1,x3+1,x3,0,x3+x

x2+x+1,x3+x2+x+1,x,1,x2+1,x2,x3+x2,x2+x

)
(6)

M i
8,8 = subfield(M i

8,4) (7)

All these matrices improve over the previously known matrices, with the only exception
being the involutory matrix from [SS16b] of dimension 4 × 4 over GL(4,F2). M4,4 was
found after enumerating a few thousand Hadamard matrices, while M8,4 and M i

8,4 are
randomly generated and were found after a few seconds. Every best matrix over GL(8,F2)
uses the subfield construction.

With these results we want to highlight that, when applying global optimizations, it is
quite easy to improve (almost) all currently best known results. We would like to mention
that our results should not be misunderstood as an attempt to construct matrices, which
cannot be improved. Another point that was not covered in this work is the depth of the
critical path as considered in [BFP17]. This might well be a criteria for optimization in
other scenarios.

5 Acknowledgements
We would like to thank Joan Boyar, René Peralta, Chiara Schiavo, and Andrea Visconti
for valuable comments on implementations and other practical details of their heuristics.
Also thanks to the anonymous reviewers for helpful comments and for pointing out an
error in the generation of our straight-line programs.

This work was supported by the German Research Foundation through the DFG
Research Training Group GRK 1817 (UbiCrypt) and the DFG project 267225567, and by
the European Commission through Horizon 2020 project ICT-645622 (PQCRYPTO).

18 Shorter Linear Straight-Line Programs for MDS Matrices

References
[Alb+14] Martin R. Albrecht, Benedikt Driessen, Elif Bilge Kavun, Gregor Leander,

Christof Paar, and Tolga Yalçin. “Block Ciphers - Focus on the Linear Layer
(feat. PRIDE).” In: CRYPTO 2014, Part I. Ed. by Juan A. Garay and Rosario
Gennaro. Vol. 8616. LNCS. Springer, Heidelberg, Aug. 2014, pp. 57–76. doi:
10.1007/978-3-662-44371-2_4.

[And+14] Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Florian Mendel,
Bart Mennink, Nicky Mouha, Qingju Wang, and Kan Yasuda. PRIMATEs
v1.02. Submission to the CAESAR competition. 2014.

[Ava17] Roberto Avanzi. “The QARMA Block Cipher Family.” In: IACR Trans. Symm.
Cryptol. 2017.1 (2017), pp. 4–44. issn: 2519-173X. doi: 10.13154/tosc.v2017.
i1.4-44.

[Ban+15] Subhadeep Banik, Andrey Bogdanov, Takanori Isobe, Kyoji Shibutani, Harunaga
Hiwatari, Toru Akishita, and Francesco Regazzoni. “Midori: A Block Cipher
for Low Energy.” In: ASIACRYPT 2015, Part II. Ed. by Tetsu Iwata and Jung
Hee Cheon. Vol. 9453. LNCS. Springer, Heidelberg, Nov. 2015, pp. 411–436.
doi: 10.1007/978-3-662-48800-3_17.

[Bar+10] Paulo S. L. M. Barreto, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and
Elmar Tischhauser. “Whirlwind: a new cryptographic hash function.” In: Des.
Codes Cryptography 56.2–3 (2010), pp. 141–162. doi: 10.1007/s10623-010-
9391-y.

[BBR16a] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. “Atomic-AES:
A Compact Implementation of the AES Encryption/Decryption Core.” In:
INDOCRYPT 2016. Ed. by Orr Dunkelman and Somitra Kumar Sanadhya.
Vol. 10095. LNCS. Springer, Heidelberg, Dec. 2016, pp. 173–190. doi: 10.
1007/978-3-319-49890-4_10.

[BBR16b] Subhadeep Banik, Andrey Bogdanov, and Francesco Regazzoni. Atomic-AES
v2.0. Cryptology ePrint Archive, Report 2016/1005. http://eprint.iacr.
org/2016/1005. 2016.

[BC14] Daniel J. Bernstein and Tung Chou. “Faster Binary-Field Multiplication and
Faster Binary-Field MACs.” In: SAC 2014. Ed. by Antoine Joux and Amr M.
Youssef. Vol. 8781. LNCS. Springer, Heidelberg, Aug. 2014, pp. 92–111. doi:
10.1007/978-3-319-13051-4_6.

[Bei+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. “The
SKINNY Family of Block Ciphers and Its Low-Latency Variant MANTIS.”
In: CRYPTO 2016, Part II. Ed. by Matthew Robshaw and Jonathan Katz.
Vol. 9815. LNCS. Springer, Heidelberg, Aug. 2016, pp. 123–153. doi: 10.1007/
978-3-662-53008-5_5.

[Ber09] Daniel J. Bernstein. “Optimizing linear maps modulo 2.” In: Workshop Record
of SPEED-CC – Software Performance Enhancement for Encryption and
Decryption and Cryptographic Compilers. 2009, pp. 3–18.

[BFP17] Joan Boyar, Magnus Gausdal Find, and René Peralta. “Low-Depth, Low-Size
Circuits for Cryptographic Applications.” BFA 2017. 2017.

[Bil+13] Begül Bilgin, Andrey Bogdanov, Miroslav Knežević, Florian Mendel, and
Qingju Wang. “Fides: Lightweight Authenticated Cipher with Side-Channel
Resistance for Constrained Hardware.” In: CHES 2013. Ed. by Guido Bertoni
and Jean-Sébastien Coron. Vol. 8086. LNCS. Springer, Heidelberg, Aug. 2013,
pp. 142–158. doi: 10.1007/978-3-642-40349-1_9.

http://dx.doi.org/10.1007/978-3-662-44371-2_4
http://dx.doi.org/10.13154/tosc.v2017.i1.4-44
http://dx.doi.org/10.13154/tosc.v2017.i1.4-44
http://dx.doi.org/10.1007/978-3-662-48800-3_17
http://dx.doi.org/10.1007/s10623-010-9391-y
http://dx.doi.org/10.1007/s10623-010-9391-y
http://dx.doi.org/10.1007/978-3-319-49890-4_10
http://dx.doi.org/10.1007/978-3-319-49890-4_10
http://eprint.iacr.org/2016/1005
http://eprint.iacr.org/2016/1005
http://dx.doi.org/10.1007/978-3-319-13051-4_6
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/978-3-662-53008-5_5
http://dx.doi.org/10.1007/978-3-642-40349-1_9

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 19

[Bir+04] Alex Biryukov, Christophe De Cannieére, Joseph Lano, Siddika Berna Ors,
and Bart Preneel. Security and Performance Analysis of ARIA. Jan. 2004. url:
https://www.esat.kuleuven.be/cosic/publications/article-500.pdf.

[BKL16] Christof Beierle, Thorsten Kranz, and Gregor Leander. “Lightweight Multiplica-
tion in GF(2n) with Applications to MDS Matrices.” In: CRYPTO 2016, Part I.
Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9814. LNCS. Springer,
Heidelberg, Aug. 2016, pp. 625–653. doi: 10.1007/978-3-662-53018-4_23.

[BMP08] Joan Boyar, Philip Matthews, and René Peralta. “On the Shortest Linear
Straight-Line Program for Computing Linear Forms.” In:MFCS 2008. Vol. 5162.
LNCS. 2008, pp. 168–179. doi: 10.1007/978-3-540-85238-4_13.

[BMP13] Joan Boyar, Philip Matthews, and René Peralta. “Logic Minimization Tech-
niques with Applications to Cryptology.” In: Journal of Cryptology 26.2 (Apr.
2013), pp. 280–312. doi: 10.1007/s00145-012-9124-7.

[Bog+07] Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
“PRESENT: An Ultra-Lightweight Block Cipher.” In: CHES 2007. Ed. by
Pascal Paillier and Ingrid Verbauwhede. Vol. 4727. LNCS. Springer, Heidelberg,
Sept. 2007, pp. 450–466.

[Bor+12] Julia Borghoff, Anne Canteaut, Tim Güneysu, Elif Bilge Kavun, Miroslav
Knežević, Lars R. Knudsen, Gregor Leander, Ventzislav Nikov, Christof Paar,
Christian Rechberger, Peter Rombouts, Søren S. Thomsen, and Tolga Yalçin.
“PRINCE - A Low-Latency Block Cipher for Pervasive Computing Applications
- Extended Abstract.” In: ASIACRYPT 2012. Ed. by Xiaoyun Wang and Kazue
Sako. Vol. 7658. LNCS. Springer, Heidelberg, Dec. 2012, pp. 208–225. doi:
10.1007/978-3-642-34961-4_14.

[BP10] Joan Boyar and René Peralta. “A New Combinational Logic Minimization
Technique with Applications to Cryptology.” In: SEA 2010. Vol. 6049. LNCS.
2010, pp. 178–189. doi: 10.1007/978-3-642-13193-6_16.

[BRa] Paulo Barreto and Vincent Rijmen. The ANUBIS Block Cipher. First Open
NESSIE Workshop.

[BRb] Paulo Barreto and Vincent Rijmen. The Khazad legacy-level Block Cipher.
First Open NESSIE Workshop.

[BRc] Paulo Barreto and Vincent Rijmen. The Whirlpool Hashing Function. First
Open NESSIE Workshop.

[Cho+12] Jiali Choy, Huihui Yap, Khoongming Khoo, Jian Guo, Thomas Peyrin, Axel
Poschmann, and Chik How Tan. “SPN-Hash: Improving the Provable Re-
sistance against Differential Collision Attacks.” In: AFRICACRYPT 12. Ed.
by Aikaterini Mitrokotsa and Serge Vaudenay. Vol. 7374. LNCS. Springer,
Heidelberg, July 2012, pp. 270–286.

[CMR05] Carlos Cid, Sean Murphy, and Matthew J. B. Robshaw. “Small Scale Variants
of the AES.” In: FSE 2005. Ed. by Henri Gilbert and Helena Handschuh.
Vol. 3557. LNCS. Springer, Heidelberg, Feb. 2005, pp. 145–162.

[Dae95] Joan Daemen. “Cipher and hash function design strategies based on linear
and differential cryptanalysis.” PhD thesis. Doctoral Dissertation, March 1995,
KU Leuven, 1995.

[DKR97] Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. “The Block Cipher
Square.” In: FSE’97. Ed. by Eli Biham. Vol. 1267. LNCS. Springer, Heidelberg,
Jan. 1997, pp. 149–165.

https://www.esat.kuleuven.be/cosic/publications/article-500.pdf
http://dx.doi.org/10.1007/978-3-662-53018-4_23
http://dx.doi.org/10.1007/978-3-540-85238-4_13
http://dx.doi.org/10.1007/s00145-012-9124-7
http://dx.doi.org/10.1007/978-3-642-34961-4_14
http://dx.doi.org/10.1007/978-3-642-13193-6_16

20 Shorter Linear Straight-Line Programs for MDS Matrices

[DR02] Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Ad-
vanced Encryption Standard. Information Security and Cryptography. Springer,
2002. isbn: 3-540-42580-2. doi: 10.1007/978-3-662-04722-4.

[FBR06] Décio Luiz Gazzoni Filho, Paulo S L M Barreto, and Vincent Rijmen. “The
Maelstrom-0 Hash Function.” In: 2006.

[FS10] Carsten Fuhs and Peter Schneider-Kamp. “Synthesizing Shortest Linear
Straight-Line Programs over GF(2) Using SAT.” In: SAT. Vol. 6175. LNCS.
Springer, 2010, pp. 71–84. doi: 10.1007/978-3-642-14186-7_8.

[FS12] Carsten Fuhs and Peter Schneider-Kamp. “Optimizing the AES S-Box using
SAT.” In: IWIL 2010. The 8th International Workshop on the Implementation
of Logics. Ed. by Geoff Sutcliffe, Stephan Schulz, and Eugenia Ternovska.
Vol. 2. EPiC Series in Computing. EasyChair, 2012, pp. 64–70.

[Gau+] Praveen Gauravaram, Lars R. Knudsen, Krystian Matusiewicz, Florian Mendel,
Christian Rechberger, Martin Schläffer, and Søren S. Thomsen. Grøstl – a
SHA-3 candidate. Submitted to SHA-3.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. “The PHOTON Family of
Lightweight Hash Functions.” In: CRYPTO 2011. Ed. by Phillip Rogaway.
Vol. 6841. LNCS. Springer, Heidelberg, Aug. 2011, pp. 222–239.

[GR13] Kishan Chand Gupta and Indranil Ghosh Ray. “On Constructions of Involutory
MDS Matrices.” In: AFRICACRYPT 13. Ed. by Amr Youssef, Abderrahmane
Nitaj, and Aboul Ella Hassanien. Vol. 7918. LNCS. Springer, Heidelberg, June
2013, pp. 43–60. doi: 10.1007/978-3-642-38553-7_3.

[Guo+11] Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw.
“The LED Block Cipher.” In: CHES 2011. Ed. by Bart Preneel and Tsuyoshi
Takagi. Vol. 6917. LNCS. Springer, Heidelberg, Sept. 2011, pp. 326–341.

[JA09] Jorge Nakahara Jr. and Élcio Abrahão. “A New Involutory MDS Matrix for
the AES.” In: I. J. Network Security 9.2 (2009), pp. 109–116. url: http:
//ijns.femto.com.tw/contents/ijns-v9-n2/ijns-2009-v9-n2-p109-
116.pdf.

[Jea+17] Jérémy Jean, Amir Moradi, Thomas Peyrin, and Pascal Sasdrich. “Bit-Sliding:
A Generic Technique for Bit-Serial Implementations of SPN-based Primitives
- Applications to AES, PRESENT and SKINNY.” In: CHES 2017. Ed. by
Wieland Fischer and Naofumi Homma. Vol. 10529. LNCS. Springer, Heidelberg,
Sept. 2017, pp. 687–707.

[JNP14] Jérémy Jean, Ivica Nikolić, and Thomas Peyrin. Joltik. Submission to the
CAESAR competition. 2014.

[JPS17] Jérémy Jean, Thomas Peyrin, and Siang Meng Sim. “Optimizing Implementa-
tions of Lightweight Building Blocks.” In: IACR Trans. Symm. Cryptol. 2017.4
(2017). To appear, available at http://eprint.iacr.org/2017/101. issn:
2519-173X.

[JV04] Pascal Junod and Serge Vaudenay. “FOX: A New Family of Block Ciphers.”
In: SAC 2004. Ed. by Helena Handschuh and Anwar Hasan. Vol. 3357. LNCS.
Springer, Heidelberg, Aug. 2004, pp. 114–129.

[Kho+14] Khoongming Khoo, Thomas Peyrin, Axel York Poschmann, and Huihui Yap.
“FOAM: Searching for Hardware-Optimal SPN Structures and Components
with a Fair Comparison.” In: CHES 2014. Ed. by Lejla Batina and Matthew
Robshaw. Vol. 8731. LNCS. Springer, Heidelberg, Sept. 2014, pp. 433–450.
doi: 10.1007/978-3-662-44709-3_24.

http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/978-3-642-14186-7_8
http://dx.doi.org/10.1007/978-3-642-38553-7_3
http://ijns.femto.com.tw/contents/ijns-v9-n2/ijns-2009-v9-n2-p109-116.pdf
http://ijns.femto.com.tw/contents/ijns-v9-n2/ijns-2009-v9-n2-p109-116.pdf
http://ijns.femto.com.tw/contents/ijns-v9-n2/ijns-2009-v9-n2-p109-116.pdf
http://eprint.iacr.org/2017/101
http://dx.doi.org/10.1007/978-3-662-44709-3_24

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 21

[Kwo+03] Daesung Kwon, Jaesung Kim, Sangwoo Park, Soo Hak Sung, Yaekwon Sohn,
Jung Hwan Song, Yongjin Yeom, E-Joong Yoon, Sangjin Lee, Jaewon Lee,
Seongtaek Chee, Daewan Han, and Jin Hong. “New Block Cipher: ARIA.” In:
ICISC. Vol. 2971. LNCS. Springer, 2003, pp. 432–445. doi: 10.1007/978-3-
540-24691-6_32.

[LF04] Jérôme Lacan and Jérôme Fimes. “Systematic MDS erasure codes based
on Vandermonde matrices.” In: IEEE Communications Letters 8.9 (2004),
pp. 570–572. doi: 10.1109/LCOMM.2004.833807.

[LN97] Rudolf Lidl and Harald Niederreiter. Finite Fields. EBL-Schweitzer. Cambridge
University Press, 1997. isbn: 9780521392310.

[LS16] Meicheng Liu and Siang Meng Sim. “Lightweight MDS Generalized Circulant
Matrices.” In: FSE 2016. Ed. by Thomas Peyrin. Vol. 9783. LNCS. Springer,
Heidelberg, Mar. 2016, pp. 101–120. doi: 10.1007/978-3-662-52993-5_6.

[LW16] Yongqiang Li and Mingsheng Wang. “On the Construction of Lightweight
Circulant Involutory MDS Matrices.” In: FSE 2016. Ed. by Thomas Peyrin.
Vol. 9783. LNCS. Springer, Heidelberg, Mar. 2016, pp. 121–139. doi: 10.1007/
978-3-662-52993-5_7.

[LW17] Chaoyun Li and Qingju Wang. “Design of Lightweight Linear Diffusion Layers
from Near-MDS Matrices.” In: IACR Trans. Symm. Cryptol. 2017.1 (2017),
pp. 129–155. issn: 2519-173X. doi: 10.13154/tosc.v2017.i1.129-155.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of
Error-Correcting Codes. North-Holland Publishing Company, 1977.

[Paa97] Christof Paar. “Optimized Arithmetic for Reed-Solomon Encoders.” In: ISIT.
IEEE, 1997. doi: 10.1109/ISIT.1997.613165.

[Saj+12] Mahdi Sajadieh, Mohammad Dakhilalian, Hamid Mala, and Behnaz Omoomi.
“On construction of involutory MDS matrices from Vandermonde Matrices in
GF(2q).” In: Designs, Codes and Cryptography 64.3 (Sept. 2012), pp. 287–308.
issn: 1573-7586. doi: 10.1007/s10623-011-9578-x.

[Sat+01] Akashi Satoh, Sumio Morioka, Kohji Takano, and Seiji Munetoh. “A Com-
pact Rijndael Hardware Architecture with S-Box Optimization.” In: ASI-
ACRYPT 2001. Ed. by Colin Boyd. Vol. 2248. LNCS. Springer, Heidelberg,
Dec. 2001, pp. 239–254.

[Sch+98] Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall, and
Niels Ferguson. Twofish: A 128-Bit Block Cipher. 1998.

[Seg55] Beniamino Segre. “Curve razionali normali ek-archi negli spazi finiti.” In:
Annali di Matematica Pura ed Applicata 39.1 (Dec. 1955), pp. 357–379. issn:
1618-1891. doi: 10.1007/BF02410779.

[Shi+07] Taizo Shirai, Kyoji Shibutani, Toru Akishita, Shiho Moriai, and Tetsu Iwata.
“The 128-Bit Blockcipher CLEFIA (Extended Abstract).” In: FSE 2007. Ed. by
Alex Biryukov. Vol. 4593. LNCS. Springer, Heidelberg, Mar. 2007, pp. 181–195.

[Sim+15] Siang Meng Sim, Khoongming Khoo, Frédérique E. Oggier, and Thomas
Peyrin. “Lightweight MDS Involution Matrices.” In: FSE 2015. Ed. by Gregor
Leander. Vol. 9054. LNCS. Springer, Heidelberg, Mar. 2015, pp. 471–493. doi:
10.1007/978-3-662-48116-5_23.

[SS16a] Sumanta Sarkar and Siang Meng Sim. “A Deeper Understanding of the
XOR Count Distribution in the Context of Lightweight Cryptography.” In:
AFRICACRYPT 2016. Ed. by David Pointcheval, Abderrahmane Nitaj, and
Tajjeeddine Rachidi. Vol. 9646. LNCS. Springer International Publishing, 2016,
pp. 167–182.

http://dx.doi.org/10.1007/978-3-540-24691-6_32
http://dx.doi.org/10.1007/978-3-540-24691-6_32
http://dx.doi.org/10.1109/LCOMM.2004.833807
http://dx.doi.org/10.1007/978-3-662-52993-5_6
http://dx.doi.org/10.1007/978-3-662-52993-5_7
http://dx.doi.org/10.1007/978-3-662-52993-5_7
http://dx.doi.org/10.13154/tosc.v2017.i1.129-155
http://dx.doi.org/10.1109/ISIT.1997.613165
http://dx.doi.org/10.1007/s10623-011-9578-x
http://dx.doi.org/10.1007/BF02410779
http://dx.doi.org/10.1007/978-3-662-48116-5_23

22 Shorter Linear Straight-Line Programs for MDS Matrices

[SS16b] Sumanta Sarkar and Habeeb Syed. “Lightweight Diffusion Layer: Importance
of Toeplitz Matrices.” In: IACR Trans. Symm. Cryptol. 2016.1 (2016). http:
//tosc.iacr.org/index.php/ToSC/article/view/537, pp. 95–113. issn:
2519-173X. doi: 10.13154/tosc.v2016.i1.95-113.

[SS17] Sumanta Sarkar and Habeeb Syed. “Analysis of Toeplitz MDS Matrices.” In:
ACISP 17, Part II. Ed. by Josef Pieprzyk and Suriadi Suriadi. Vol. 10343.
LNCS. Springer, Heidelberg, July 2017, pp. 3–18.

[Sto16] Ko Stoffelen. “Optimizing S-Box Implementations for Several Criteria Using
SAT Solvers.” In: FSE 2016. Ed. by Thomas Peyrin. Vol. 9783. LNCS. Springer,
Heidelberg, Mar. 2016, pp. 140–160. doi: 10.1007/978-3-662-52993-5_8.

[VSP17] Andrea Visconti, Chiara Valentina Schiavo, and René Peralta. Improved upper
bounds for the expected circuit complexity of dense systems of linear equations
over GF(2). Cryptology ePrint Archive, Report 2017/194. http://eprint.
iacr.org/2017/194. 2017.

[War94] William P. Wardlaw. “Matrix Representation of Finite Fields.” In: Mathematics
Magazine 67.4 (1994), pp. 289–293. issn: 0025570X, 19300980.

[Wat+02] Dai Watanabe, Soichi Furuya, Hirotaka Yoshida, Kazuo Takaragi, and Bart
Preneel. “A New Keystream Generator MUGI.” In: FSE 2002. Ed. by Joan
Daemen and Vincent Rijmen. Vol. 2365. LNCS. Springer, Heidelberg, Feb.
2002, pp. 179–194.

[Zha+16] Ruoxin Zhao, Baofeng Wu, Rui Zhang, and Qian Zhang. Designing Optimal
Implementations of Linear Layers (Full Version). Cryptology ePrint Archive,
Report 2016/1118. http://eprint.iacr.org/2016/1118. 2016.

[ZWS17] Lijing Zhou, Licheng Wang, and Yiru Sun. On the Construction of Lightweight
Orthogonal MDS Matrices. Cryptology ePrint Archive, Report 2017/371. http:
//eprint.iacr.org/2017/371. 2017.

http://tosc.iacr.org/index.php/ToSC/article/view/537
http://tosc.iacr.org/index.php/ToSC/article/view/537
http://dx.doi.org/10.13154/tosc.v2016.i1.95-113
http://dx.doi.org/10.1007/978-3-662-52993-5_8
http://eprint.iacr.org/2017/194
http://eprint.iacr.org/2017/194
http://eprint.iacr.org/2016/1118
http://eprint.iacr.org/2017/371
http://eprint.iacr.org/2017/371

Thorsten Kranz, Gregor Leander, Ko Stoffelen, Friedrich Wiemer 23

A Correlation Figures

80 100 120 140 160

50

60

70

(a) Cauchy

80 100 120 140 160

50

60

70

(b) Circulant

80 100 120 140 160

50

60

70

(c) Hadamard

80 100 120 140 160

50

60

70

(d) Toeplitz

80 100 120 140 160

50

60

70

(e) Vandermonde

Figure 3: Correlations between naive (x-axis) and Paar1 (y-axis) XOR counts for randomly
generated matrices.

40 60 80 100 120
40

50

60

70

(a) Circulant (enum)

40 60 80 100 120
40

50

60

70

(b) Hadamard (enum)

40 60 80 100 120
40

50

60

70

(c) Toeplitz (enum)

40 60 80 100 120
40

50

60

70

(d) Arbitrary (enum)

Figure 4: Correlations between naive (x-axis) and Paar1 (y-axis) XOR counts for
enumerated matrices.

24 Shorter Linear Straight-Line Programs for MDS Matrices

80 100 120 140 16040

50

60

(a) Cauchy

80 100 120 140 16040

50

60

(b) Circulant

80 100 120 140 16040

50

60

(c) Hadamard

80 100 120 140 16040

50

60

(d) Toeplitz

80 100 120 140 16040

50

60

(e) Vandermonde

Figure 5: Correlations between naive (x-axis) and BP (y-axis) XOR counts for randomly
generated matrices.

80 100 120

40

50

60

(a) Circulant (enum)

80 100 120

40

50

60

(b) Hadamard (enum)

80 100 120

40

50

60

(c) Toeplitz (enum)

80 100 120

40

50

60

(d) Arbitrary (enum)

Figure 6: Correlations between naive (x-axis) and BP (y-axis) XOR counts for enumerated
matrices.

	Introduction
	Preliminaries
	Basic Notations
	MDS Constructions
	Specially Structured Matrix Constructions

	Related Work
	Local Optimizations
	Global Optimizations

	Results
	Improved Implementations of Matrices
	Statistical Analysis
	Best results

	Acknowledgements
	Correlation Figures

