

Intrinsic Side-Channel Analysis Resistance and Efficient Masking

A case study of the use of SCA-related metrics and of design strategies leading to low-cost masking for CAESAR candidates

> Ko Stoffelen k.stoffelen@cs.ru.nl

Crypto Working Group September 25, 2015

Introduction

SCA metrics

Optimizing masking costs - nonlinear operations

Optimizing masking costs - comparing designs

Conclusions

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

Side-Channel Analysis

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

- Countermeasure against SCA
- Arithmetic vs. Boolean
- Costs grow quadratically for nonlinear gates, e.g.:

$$z = x \wedge y \quad \rightarrow \quad [x' = x \oplus x_m] \\ [y' = y \oplus y_m] \\ z' = x' \wedge y' \\ z_m = (x_m \wedge y') \oplus (y_m \wedge x') \oplus (x_m \wedge y_m)$$

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

 How can known metrics be used at the design stage to assess the intrinsic resistance of ciphers to implementation- and device-dependent attacks?

SCA metrics Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

- How can known metrics be used at the design stage to assess the intrinsic resistance of ciphers to implementation- and device-dependent attacks?
- How can the costs of applying masking countermeasures to ciphers be reduced?

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

Context – CAESAR competition

ACORN	++AE	AEGIS
AES-COPA	AES-CPFB	AES-JAMBU
Artemia	Ascon	AVALANCHE
CBEAM	CLOC	Deoxys
FASER	HKC	HS1-SIV
Joltik	Julius	Ketje
LAC	Marble	McMambo
NORX	OCB	OMD
PANDA	π -Cipher	POET
Prøst	Raviyoyla	Sablier
SILC	Silver	STRIBOB
Wheesht	YAES	

AES-CMCC AES-OTR Calico ELmD ICEPOLE Keyak Minalpher PAEQ POLAWIS SCREAM Tiaoxin

AES-COBRA AEZ CBA Enchilada iFeed[AES] KIASU MORUS PAES PRIMATES SHELL TriviA-ck

SCA metrics Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

Context – CAESAR competition

ACORN	_
AES-COPA	A
Artemia	A
CBEAM	(
FASER	ŀ
Joltik	J
LAC	
NORX	(
PANDA	τ
Prøst	F
SILC	5
Wheesht	Ŋ

++AEAES-CPFB Ascon CLOC lulius CB τ-Cipher Raviyoyla Silver YAFS

AEGIS AES-JAMBU AVALANCHE Deoxys HS1-SIV Ketje McMambo OMD POET Sablier STRIBOB AES-CMCC AES-OTR Calico ELmD ICEPOLE Keyak Minalpher PAEQ POLAWIS SCREAM Tiaoxin AES-COBRA AEZ CBA Enchilada iFeed[AES] KIASU MORUS AES PRIMATES SHELL TriviA-ck

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

Context – CAESAR competition

ACORN
AES-COPA
Artemia
CBEAM
FASER
Joltik
LAC
NORX
PANDA
Prøst
SILC
Wheesht

++AE AES-CPF Ascon CLOC HKC Julius Marble OCB π -Cipher Raviyoyla Silver AEGIS AES-JAMBU AVALANCHE Deoxys HS1-SIV Ketje McMambo OMD POET Sablier STRIBOB AES-CMCC AES-OTR Calico ELmD ICEPOLE Keyak Minalpher PAEQ POLAWIS SCREAM Tiaoxin AEZ MORUS PRIMATES SHELL TriviA-ck

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

Context – CAESAR competition

(S-boxes of)

8×8	5×5	4×4
AES	Ascon	Joltik
AES^{-1}	ICEPOLE	Joltik ⁻¹
iSCREAM	Ketje/Keyak	LAC
SCREAM	PRIMATE	Minalpher 🛛 🗍
$SCREAM^{-1}$	$PRIMATE^{-1}$	Prøst 🕠
		RECTANGLE
		RECTANGLE ⁻¹

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

Traditional S-box design criteria

S-box	Width	Nonlinearity	Degree	δ
AES	8	112	7	4
iSCREAM	8	96	6	16
SCREAM	8	96	5/6	16
Ascon	5	8	2	8
ICEPOLE	5	8	4	8
Ketje/Keyak	5	8	2	8
PRIMATE	5	12	2/3	2
Joltik	4	4	3	4
LAC	4	4	3	4
Minalpher	4	4	3	4 0
Prøst	4	4	3	4
RECTANGLE	4	4	3	4

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

SCA metrics

Why additional SCA-related criteria?

- SCA highly effective
- Countermeasures only applied to implementations
- Countermeasures expensive (area, speed)
- Countermeasures usually not perfect
- A lot to gain with an intrinsically more resistant S-box

Conclusions

Existing metrics

Number of measurements Signal-to-noise ratio Transparency order Success rate New signal-to-noise ratio Guessing entropy Confusion coefficient Modified transparency order Second minimum distance

- Metrics take different approaches
- Metrics work under different assumptions (power model, Gaussian noise, ...)
- Some only applicable in certain cases
- Not all meaningful in design stage

Confusion coefficient

- Intuitively: probability that power analysis attack succeeds
- Result is frequency distribution
- Lower mean \Rightarrow higher resistance
- Mean only depends on size of S-box
- Higher variance ⇒ higher resistance

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

Confusion coefficient – first-order

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

Confusion coefficient – second-order

Confusion coefficient conclusions

 Confusion coefficient mostly behaves as expected under (low-entropy) masking schemes

Confusion coefficient conclusions

- Confusion coefficient mostly behaves as expected under (low-entropy) masking schemes
- The ranking of the S-boxes according to the confusion coefficient is mostly preserved by various power consumption models

Confusion coefficient conclusions

- Confusion coefficient mostly behaves as expected under (low-entropy) masking schemes
- The ranking of the S-boxes according to the confusion coefficient is mostly preserved by various power consumption models
- The ranking of the S-boxes according to the confusion coefficient is mostly preserved by higher-order attacks

Confusion coefficient conclusions

 Confusion coefficient mostly behaves as expected under (low-entropy) masking schemes

Introduction

- The ranking of the S-boxes according to the confusion coefficient is mostly preserved by various power consumption models
- The ranking of the S-boxes according to the confusion coefficient is mostly preserved by higher-order attacks
- Assumption: mean and variance are of similar importance

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

SCA metrics comparison

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

SCA metrics comparison

Optimizing masking costs – nonlinear operations Optimizing masking costs – comparing designs Conclusions

SCA metrics comparison

SCA metrics verdict

• SNR, modified transparency order, and confusion coefficient are consistent in their predictions

- SNR, modified transparency order, and confusion coefficient are consistent in their predictions
- Second minimum distance a bit less, requires further research

- SNR, modified transparency order, and confusion coefficient are consistent in their predictions
- Second minimum distance a bit less, requires further research
- Metrics behave as they should under various circumstances

- SNR, modified transparency order, and confusion coefficient are consistent in their predictions
- Second minimum distance a bit less, requires further research
- Metrics behave as they should under various circumstances
- Minalpher, Ascon, SCREAM⁻¹ are suggested to have the most DPA-resistant S-boxes

- SNR, modified transparency order, and confusion coefficient are consistent in their predictions
- Second minimum distance a bit less, requires further research
- Metrics behave as they should under various circumstances
- Minalpher, Ascon, SCREAM⁻¹ are suggested to have the most DPA-resistant S-boxes
- However...

SCA metrics verdict

- SCA simulation results do not agree
- Usefulness of metrics still unclear

Ko Stoffelen

Crypto Working Group

Optimizing masking costs

Nonlinear operations

Multiplicative complexity (MC)

• Recall that the cost of masking nonlinear operations is quadratic in the number of inputs

Multiplicative complexity (MC)

- Recall that the cost of masking nonlinear operations is quadratic in the number of inputs
- Most nonlinear operations in the nonlinear part of the primitive: the S-box

Multiplicative complexity (MC)

- Recall that the cost of masking nonlinear operations is quadratic in the number of inputs
- Most nonlinear operations in the nonlinear part of the primitive: the S-box
- MC: minimal number of AND/OR gates required to implement function

Multiplicative complexity (MC)

- Recall that the cost of masking nonlinear operations is quadratic in the number of inputs
- Most nonlinear operations in the nonlinear part of the primitive: the S-box
- MC: minimal number of AND/OR gates required to implement function
- Goal is to compute the MC of CAESAR S-boxes

Minimizing AND/OR gates

- Existing logic synthesis tools not very helpful
 - E.g. Espresso, SIS, misII, Logic Friday, ABC, ...
- Instead: convert to SAT and let SAT solvers do the work
- Converting problem to SAT nontrivial, but feasible

Reducing decisional MC to SAT

 $q_0 = a_0 + a_1 \cdot x_0 + a_2 \cdot x_1 + a_3 \cdot x_2 + a_4 \cdot x_3$ $q_1 = a_5 + a_6 \cdot x_0 + a_7 \cdot x_1 + a_8 \cdot x_2 + a_9 \cdot x_3$ $t_0 = q_0 \cdot q_1$ $q_2 = a_{10} + a_{11} \cdot x_0 + a_{12} \cdot x_1 + a_{13} \cdot x_2 + a_{14} \cdot x_3 + a_{15} \cdot t_0$ $q_3 = a_{16} + a_{17} \cdot x_0 + a_{18} \cdot x_1 + a_{19} \cdot x_2 + a_{20} \cdot x_3 + a_{21} \cdot t_0$ $t_1 = q_2 \cdot q_3$ $q_4 = a_{22} + a_{23} \cdot x_0 + a_{24} \cdot x_1 + a_{25} \cdot x_2 + a_{26} \cdot x_3 + a_{27} \cdot t_0 + a_{28} \cdot t_1$ $q_5 = a_{29} + a_{30} \cdot x_0 + a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 + a_{34} \cdot t_0 + a_{35} \cdot t_1$ $t_2 = q_4 \cdot q_5$ $y_0 = a_{36} \cdot x_0 + a_{37} \cdot x_1 + a_{38} \cdot x_2 + a_{39} \cdot x_3 + a_{40} \cdot t_0 + a_{41} \cdot t_1 + a_{42} \cdot t_2$ $y_1 = a_{43} \cdot x_0 + a_{44} \cdot x_1 + a_{45} \cdot x_2 + a_{46} \cdot x_3 + a_{47} \cdot t_0 + a_{48} \cdot t_1 + a_{49} \cdot t_2$ $V_2 = a_{50} \cdot x_0 + a_{51} \cdot x_1 + a_{52} \cdot x_2 + a_{53} \cdot x_3 + a_{54} \cdot t_0 + a_{55} \cdot t_1 + a_{56} \cdot t_2$ $y_3 = a_{57} \cdot x_0 + a_{58} \cdot x_1 + a_{59} \cdot x_2 + a_{60} \cdot x_3 + a_{61} \cdot t_0 + a_{62} \cdot t_1 + a_{63} \cdot t_2$

- Generate logic formulas in ANF for given S-box and MC
- Convert ANF to CNF
- Let MiniSAT and CryptoMiniSAT do the work on DS cluster node
- Translate back to S-box implementation

Results

S-box	MC	S-box	MC
AES	\leq 32	PRIMATE ⁻¹	$\in \{6, 7, 8, 9, 10\}^*$
AES^{-1}	\leq 32	Joltik	4
iSCREAM	≤ 12	$Joltik^{-1}$	4*
SCREAM	≤ 11	LAC	4*
$SCREAM^{-1}$	≤ 11	Minalpher	5*
Ascon	5	Prøst	4
ICEPOLE	6*	RECTANGLE	4
Ketje/Keyak	5	RECTANGLE ⁻¹	4*
PRIMATE	$\in \{6,7\}^{\boldsymbol{*}}$		

Optimizing masking costs

Comparing designs of CAESAR candidates

High-level operations

- Table lookups
- Bitwise Boolean functions
- Shifts and rotates
- Modular addition/multiplication
- Modular polynomial multiplication

Results

	Table	Bitwise	Shifts/	Mod. add.	Mod. poly.
Operation	lookups	Boolean	rotates	and mult.	mult.
AES	256 bytes	XOR	Fixed		
iSCREAM	512 bytes	AND, OR, XOR	Fixed	imes mod 256	
SCREAM	512 bytes	AND, OR, XOR		imes mod 256	
Ascon		AND, OR, XOR	Fixed	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ICEPOLE	96 bytes	AND, XOR	Fixed		
Ketje/Keyak		AND,XOR	Fixed		
PRIMATE	25 bytes	XOR	Fixed		\checkmark
Joltik	64 bytes	XOR	Fixed	+ mod 16	$\overline{\checkmark}$
LAC	16 bytes	XOR	Fixed		
Minalpher	16 bytes	XOR			
Prøst		AND, XOR	Fixed		
RECTANGLE		AND, OR, XOR	Fixed		

- Expected masking costs not so high on average
- Ascon, Ketje, Keyak, LAC, Minalpher, Prøst, and RECTANGLE stand out
- Designers should use operations that are cheap to mask using a Boolean scheme

 SNR, modified transparency order, and confusion coefficient credible in theory

- SNR, modified transparency order, and confusion coefficient credible in theory
- However, SCA simulations do not reflect the expectations suggested by metrics

- SNR, modified transparency order, and confusion coefficient credible in theory
- However, SCA simulations do not reflect the expectations suggested by metrics
- For 4- and 5-bit S-boxes, we can find an implementation with a provably minimum number of AND/OR operations

- SNR, modified transparency order, and confusion coefficient credible in theory
- However, SCA simulations do not reflect the expectations suggested by metrics
- For 4- and 5-bit S-boxes, we can find an implementation with a provably minimum number of AND/OR operations
- Ascon, Ketje, Keyak, LAC, Minalpher, Prøst, and RECTANGLE are expected to have the lowest masking costs

Thank you for your attention

Questions?

Secret bonus slides

- SAT solvers useful for proving Bitslice Gate Complexity and Gate Complexity
- Provably minimal S-box implementation with provably minimal multiplicative complexity
- Potentially reduce circuit depth?

Secret bonus slides

S-box	BGC	Mine	Authors
Ascon			5 AND, 11 XOR, 6 NOT
ICEPOLE			
Ketje/Keyak	≤ 15	5 AND, 5 XOR, 5 NOT	5 AND, 5 XOR, 5 NOT
PRIMATE		6 AND, 1 OR, 37 XOR, 3 NOT	
$PRIMATE^{-1}$			
Joltik	11	4 OR, 4 XOR, 3 NOT	4 NOR, 3 XOR, 1 XNOR
$Joltik^{-1}$	11	4 OR, 4 XOR, 3 NOT	
LAC	13	2 AND, 2 OR, 6 XOR, 3 NOT	
Minalpher			
Prøst			4 AND, 4 XOR
RECTANGLE	< 12	2 AND, 2 OR, 7 XOR, 1 NOT	1 AND, 3 OR, 7 XOR, 1 NOT
$RECTANGLE^{-1}$	_		T TAINE

Thank you for your attention

Questions?

