Optimizing S-box Implementations for Several Criteria using SAT Solvers

Provably minimal implementations of small functions with respect to:

• Multiplicative complexity Minimize nonlinear operations (masking, MPC, FHE)

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity Minimize nonlinear operations (masking, MPC, FHE)
- Bitslice gate complexity Use only AND, OR, XOR, NOT (bitsliced software)

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity Minimize nonlinear operations (masking, MPC, FHE)
- Bitslice gate complexity Use only AND, OR, XOR, NOT (bitsliced software)
- Gate complexity

Also use NAND, NOR, XNOR (hardware, area)

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity
 - Minimize nonlinear operations (masking, MPC, FHE)
- Bitslice gate complexity Use only AND, OR, XOR, NOT (bitsliced software)
- Gate complexity

Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity

Trade-off #gates and depth (hardware, latency)

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity
 - Minimize nonlinear operations (masking, MPC, FHE)
- Bitslice gate complexity Use only AND, OR, XOR, NOT (bitsliced software)
- Gate complexity

Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity

Trade-off #gates and depth (hardware, latency)

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity
 - Minimize nonlinear operations (masking, MPC, FHE)
- Bitslice gate complexity Use only AND, OR, XOR, NOT (bitsliced software)
- Gate complexity

Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity

Trade-off #gates and depth (hardware, latency)

Generic solution: encode as SAT instance, solve, retrieve implementation

Encoding the MCDP

Multiplicative Complexity Decision Problem

Given a function f and some positive integer k, is there a circuit that implements f and that uses at most k nonlinear operations?

Encoding the MCDP

Multiplicative Complexity Decision Problem

Given a function f and some positive integer k, is there a circuit that implements f and that uses at most k nonlinear operations?

Encoding by Courtois, Mourouzis, and Hulme [CMH13, Mou15]

- Let x_i be variables representing S-box inputs
- Let y_i be variables representing S-box outputs
- Let q_i be variables representing gate inputs
- Let *t_i* be variables representing gate outputs
- Let *a_i* be variables representing wiring between gates

Encoding the MCDP

Multiplicative Complexity Decision Problem

Given a function f and some positive integer k, is there a circuit that implements f and that uses at most k nonlinear operations?

Encoding by Courtois, Mourouzis, and Hulme [CMH13, Mou15]

- Let x_i be variables representing S-box inputs
- Let y_i be variables representing S-box outputs
- Let q_i be variables representing gate inputs
- Let t_i be variables representing gate outputs
- Let *a_i* be variables representing wiring between gates

For example, lets encode a 4x4 S-box with k = 3

$$\begin{aligned} q_0 &= a_0 + a_1 \cdot x_0 + a_2 \cdot x_1 + a_3 \cdot x_2 + a_4 \cdot x_3 \\ q_1 &= a_5 + a_6 \cdot x_0 + a_7 \cdot x_1 + a_8 \cdot x_2 + a_9 \cdot x_3 \\ t_0 &= q_0 \cdot q_1 \\ q_2 &= a_{10} + a_{11} \cdot x_0 + a_{12} \cdot x_1 + a_{13} \cdot x_2 + a_{14} \cdot x_3 + a_{15} \cdot t_0 \\ q_3 &= a_{16} + a_{17} \cdot x_0 + a_{18} \cdot x_1 + a_{19} \cdot x_2 + a_{20} \cdot x_3 + a_{21} \cdot t_0 \\ t_1 &= q_2 \cdot q_3 \\ q_4 &= a_{22} + a_{23} \cdot x_0 + a_{24} \cdot x_1 + a_{25} \cdot x_2 + a_{26} \cdot x_3 + a_{27} \cdot t_0 + a_{28} \cdot t_1 \\ q_5 &= a_{29} + a_{30} \cdot x_0 + a_{31} \cdot x_1 + a_{32} \cdot x_2 + a_{33} \cdot x_3 + a_{34} \cdot t_0 + a_{35} \cdot t_1 \\ t_2 &= q_4 \cdot q_5 \\ y_0 &= a_{36} \cdot x_0 + a_{37} \cdot x_1 + a_{38} \cdot x_2 + a_{39} \cdot x_3 + a_{40} \cdot t_0 + a_{41} \cdot t_1 + a_{42} \cdot t_2 \\ y_1 &= a_{43} \cdot x_0 + a_{44} \cdot x_1 + a_{45} \cdot x_2 + a_{46} \cdot x_3 + a_{47} \cdot t_0 + a_{48} \cdot t_1 + a_{49} \cdot t_2 \\ y_2 &= a_{50} \cdot x_0 + a_{51} \cdot x_1 + a_{59} \cdot x_2 + a_{50} \cdot x_3 + a_{61} \cdot t_0 + a_{57} \cdot t_1 + a_{56} \cdot t_2 \\ y_3 &= a_{57} \cdot x_0 + a_{58} \cdot x_1 + a_{59} \cdot x_2 + a_{60} \cdot x_3 + a_{61} \cdot t_0 + a_{62} \cdot t_1 + a_{63} \cdot t_2 \end{aligned}$$

Not bound to specific S-box yet

• Consider S-box as lookup table with 2^n entries (x, y)

- Consider S-box as lookup table with 2^n entries (x, y)
- A correct circuit works for all possible values

- Consider S-box as lookup table with 2^n entries (x, y)
- A correct circuit works for all possible values
- Create 2ⁿ copies of equations Note: unfortunately this encoding grows exponentially

- Consider S-box as lookup table with 2^n entries (x, y)
- A correct circuit works for all possible values
- Create 2ⁿ copies of equations Note: unfortunately this encoding grows exponentially
- Rename x_i , y_i , q_i , t_i , but not a_i

- Consider S-box as lookup table with 2^n entries (x, y)
- A correct circuit works for all possible values
- Create 2ⁿ copies of equations Note: unfortunately this encoding grows exponentially
- Rename x_i , y_i , q_i , t_i , but not a_i
- Concatenate

- Consider S-box as lookup table with 2^n entries (x, y)
- A correct circuit works for all possible values
- Create 2ⁿ copies of equations Note: unfortunately this encoding grows exponentially
- Rename x_i , y_i , q_i , t_i , but not a_i
- Concatenate
- Add lookup table (constant equation per bit)

- Consider S-box as lookup table with 2^n entries (x, y)
- A correct circuit works for all possible values
- Create 2ⁿ copies of equations Note: unfortunately this encoding grows exponentially
- Rename x_i , y_i , q_i , t_i , but not a_i
- Concatenate
- Add lookup table (constant equation per bit)

Not bound to specific S-box yet

- Consider S-box as lookup table with 2^n entries (x, y)
- A correct circuit works for all possible values
- Create 2ⁿ copies of equations Note: unfortunately this encoding grows exponentially
- Rename x_i , y_i , q_i , t_i , but not a_i
- Concatenate
- Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree multivariate polynomials $[{\sf BCJ07}]$

Multiplicative complexity results

S-box	Size <i>n</i> × <i>m</i>	Multiplicative complexity
Ascon	5x5	5
ICEPOLE	5×5	6
Keccak/Ketje/Keyak	5×5	5
PRIMATEs	5×5	$\in \{6,7\}$
PRIMATEs ⁻¹	5×5	$\in \{6,7,8,9,10\}$
Joltik/Piccolo	4x4	4
Joltik ⁻¹ /Piccolo ⁻¹	4x4	4
LAC	4x4	4
Minalpher	4x4	5
Prøst	4x4	4
RECTANGLE	4×4	4
RECTANGLE ⁻¹	4×4	4

Given a function f and some positive integer k, is there a circuit with only gates \in {AND, OR, XOR, NOT} that implements f and that uses at most k gates?

Given a function f and some positive integer k, is there a circuit with only gates $\in \{AND, OR, XOR, NOT\}$ that implements f and that uses at most k gates?

Idea

Hard-code k gates of unknown type:

• Let *b_i* be variables representing wiring *inside* gates

Given a function f and some positive integer k, is there a circuit with only gates $\in \{AND, OR, XOR, NOT\}$ that implements f and that uses at most k gates?

Idea

Hard-code k gates of unknown type:

- Let *b_i* be variables representing wiring *inside* gates
- $t_0 = b_0 \cdot q_0 \cdot q_1 + b_1 \cdot q_0 + b_1 \cdot q_1 + b_2 + b_2 \cdot q_0$ $0 = b_0 \cdot b_2$ $0 = b_1 \cdot b_2$

Given a function f and some positive integer k, is there a circuit with only gates $\in \{AND, OR, XOR, NOT\}$ that implements f and that uses at most k gates?

Idea

Hard-code k gates of unknown type:

- Let *b_i* be variables representing wiring *inside* gates
- $t_0 = b_0 \cdot q_0 \cdot q_1 + b_1 \cdot q_0 + b_1 \cdot q_1 + b_2 + b_2 \cdot q_0$ $0 = b_0 \cdot b_2$ $0 = b_1 \cdot b_2$

Given a function f and some positive integer k, is there a circuit with only gates \in {AND, OR, XOR, NOT} that implements f and that uses at most k gates?

Idea

Hard-code k gates of unknown type:

- Let *b_i* be variables representing wiring *inside* gates
- $t_0 = b_0 \cdot q_0 \cdot q_1 + b_1 \cdot q_0 + b_1 \cdot q_1 + b_2 + b_2 \cdot q_0$ $0 = b_0 \cdot b_2$ $0 = b_1 \cdot b_2$

Gate input q_i can be precisely one:

- S-box input bit
- Previous gate output bit

Linear combination with additional at-most-1 constraints

Bitslice gate complexity results

S-box	Bitslice gate complexity	Implementation		
Keccak/Ketje/Keyak	\leq 13	3 AND, 2 OR, 5 XOR, 3 NOT		
Joltik/Piccolo	10	1 AND, 3 OR, 4 XOR, 2 NOT		
Joltik ⁻¹ /Piccolo ⁻¹	10	1 AND, 3 OR, 4 XOR, 2 NOT		
LAC	11	2 AND, 2 OR, 6 XOR, 1 NOT		
Minalpher	≥ 11			
Prøst	8	4 AND, 4 XOR		
RECTANGLE	$\in \{11, 12\}$	1 AND, 3 OR, 7 XOR, 1 NOT		
RECTANGLE ⁻¹	$\in \{10, 11, 12\}$	4 OR, 7 XOR, 1 NOT		

Gate complexity

Only difference: $t_0 = b_0 \cdot q_0 \cdot q_1 + b_1 \cdot q_0 + b_1 \cdot q_1 + b_2$

$b_{3i}b_{3i+1}b_{3i+2}$	Gate t_i function
000	0
001	1
010	$q_{2i}\oplus q_{2i+1}$
011	$q_{2i} \leftrightarrow q_{2i+1}$
100	$q_{2i} \wedge q_{2i+1}$
101	$q_{2i} \uparrow q_{2i+1}$
110	$q_{2i} \lor q_{2i+1}$
111	$q_{2i}\downarrow q_{2i+1}$

Gate complexity results

S-box	Gate complexity	Implementation		
Joltik/Piccolo	8	2 OR, 1 XOR, 2 NOR, 3 XNOR		
Joltik ⁻¹ /Piccolo ⁻¹	8	2 OR, 1 XOR, 2 NOR, 3 XNOR		
LAC	10	1 AND, 3 OR, 2 XOR, 4 XNOR		
Prøst	8	4 AND, 4 XOR		
RECTANGLE	$\in \{10,11\}$	1 AND, 1 OR, 2 XOR, 1 NAND,		
		1 NOR, 5 XNOR		
RECTANGLE ⁻¹	$\in \{10,11\}$	1 AND, 1 OR, 6 XOR, 1 NAND,		
		1 NOR, 1 XNOR		

Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency

Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency

Every function can be implemented in depth 2 (normal forms) However, at the cost of more gates (width)

Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency

Every function can be implemented in depth 2 (normal forms) However, at the cost of more gates (width)

Idea

Introduce maximum width w

Given a function f and some positive integer k, is there a circuit of depth at most k and width at most w that implements f?

Encoding like gate complexity, but gate input q_i is now either S-box input or gate output on previous depth layer

Circuit depth complexity results

S-box	k	W	Implementation	UNSAT bounds
Joltik/Piccolo	4	2	2 OR, 1 XOR,	k = 4, w = 1
			2 NOR, 3 XNOR	k = 3, w = 10
Joltik ⁻¹ /Piccolo ⁻¹	4	3	3 OR, 5 XOR,	k = 4, w = 2
			1 NOR, 3 XNOR	k = 3, w = 10
LAC	3	6	3 OR, 4 XOR,	k = 3, w = 4
			4 NAND, 4 XNOR	k = 2, w = 10
Prøst	4	3	4 AND, 1 OR, 4 XOR,	k = 4, w = 2
			1 NAND, 1 XNOR	k = 3, w = 10
RECTANGLE	3	6	2 AND, 3 OR, 5 XOR,	k = 3, w = 4
			1 NAND, 1 NOR, 3 XNOR	k = 2, w = 10
RECTANGLE ⁻¹	3	6	1 OR, 8 XOR,	k = 3, w = 4
			3 NAND, 2 NOR, 2 XNOR	k = 2, w = 10

Combining criteria

What about combinations?

Combining criteria

What about combinations?

Lets optimize PRIMATEs 5x5 S-box

- First for multiplicative complexity
- Then reduce linear gates, i.e. XOR, NOT

Combining criteria

What about combinations?

Lets optimize PRIMATEs 5x5 S-box

- First for multiplicative complexity
- Then reduce linear gates, i.e. XOR, NOT

Apply existing methods for solving the Shortest Linear Straight-Line Program (SLP) problem

- Exact, using SAT solvers (Fuhs-Schneider-Kamp [FSK10])
- Heuristics (Boyar–Peralta [BP10])

SLP

Given \mathbb{F} and constants $a_{i,j} \in \mathbb{F}$, compute linear forms

$$a_{1,1}x_1 + a_{1,2}x_2 + \dots + a_{1,n}x_n$$

$$a_{2,1}x_1 + a_{2,2}x_2 + \dots + a_{2,n}x_n$$

$$\dots$$

$$a_{m,1}x_1 + a_{m,2}x_2 + \dots + a_{m,n}x_n$$

in the shortest number of program lines of the form

 $u := \lambda v + \mu w$

where $\lambda,\mu\in\mathbb{F}$

$a = x_0 \oplus x_0$	$a_{2} - x_{2} \oplus t_{2} \oplus t_{3}$
$q_0 = x_0 \oplus x_3$	$q_9 = x_2 \oplus t_0 \oplus t_3$
$q_1 = x_1$	$t_4=q_8\wedge q_9$
$\mathit{t_0} = \mathit{q_0} \lor \mathit{q_1}$	$q_{10} = x_0 \oplus x_3 \oplus x_4$
$q_2 = \neg(x_1 \oplus x_3)$	$q_{11} = \neg(x_0 \oplus x_4)$
$q_3 = x_0 \oplus x_2$	$t_5=q_{10}\vee q_{11}$
$t_1=q_2\wedge q_3$	$q_{12} = \neg (x_1 \oplus x_2 \oplus t_0 \oplus t_2 \oplus t_3 \oplus t_4)$
$q_4 = x_0 \oplus x_1 \oplus x_4$	$q_{13} = x_2 \oplus x_3$
$q_5 = x_0 \oplus x_2 \oplus x_3$	$t_6=q_{12}\wedge q_{13}$
$t_2=q_4\wedge q_5$	$y_0 = x_1 \oplus x_3 \oplus t_2 \oplus t_3 \oplus t_5 \oplus t_6$
$q_6 = \neg (x_0 \oplus x_2 \oplus x_3 \oplus x_4)$	$y_1 = x_0 \oplus x_4 \oplus t_1 \oplus t_2 \oplus t_3 \oplus t_4 \oplus t_5 \oplus t_6$
$q_7 = x_1 \oplus x_2 \oplus x_4$	$y_2 = x_1 \oplus x_2 \oplus x_4 \oplus t_1 \oplus t_3 \oplus t_4 \oplus t_5$
$t_3=q_6 \lor q_7$	$y_3 = x_0 \oplus x_2 \oplus x_3 \oplus x_4 \oplus t_3 \oplus t_4 \oplus t_5 \oplus t_6$
$q_8 = x_0 \oplus x_1 \oplus x_2 \oplus x_3 \oplus x_4$	$y_4 = \neg (x_2 \oplus t_0 \oplus t_2 \oplus t_3 \oplus t_4 \oplus t_5 \oplus t_6)$

• Treat linear operations before and after nonlinear operations as two separate SLP instances

- Treat linear operations before and after nonlinear operations as two separate SLP instances
- Try exact method

- Treat linear operations before and after nonlinear operations as two separate SLP instances
- Try exact method
- If infeasible, try heuristic method

- Treat linear operations before and after nonlinear operations as two separate SLP instances
- Try exact method
- If infeasible, try heuristic method

- Treat linear operations before and after nonlinear operations as two separate SLP instances
- Try exact method
- If infeasible, try heuristic method

Managed to reduce 58 XOR gates to 31 XOR gates

$z_0 = x_0 \oplus x_4$	$q_7 = x_4 \oplus z_1$	$z_5 = t_2 \oplus z_4$
$z_1 = x_1 \oplus x_2$	$t_3=q_6\vee q_7$	$z_6 = t_1 \oplus t_6$
$z_2 = x_2 \oplus x_3$	$q_8=q_4\oplus z_2$	$z_7 = t_4 \oplus z_5$
$q_0 = x_0 \oplus x_3$	$z_9 = t_0 \oplus t_3$	$z_8 = t_1 \oplus z_7$
$t_0 = q_0 \vee x_1$	$q_9=x_2\oplus z_9$	$z_{10} = t_0 \oplus z_7$
$q_2 = x_1 \oplus x_3$	$t_4=q_8\wedge q_9$	$z_{11} = t_4 \oplus z_4$
$q_3 = \neg(x_0 \oplus x_2)$	$q_{10} = \neg(x_3 \oplus z_0)$	$z_{12}=z_6\oplus z_{11}$
$t_1 = q_2 \vee q_3$	$t_5=q_{10}\wedge z_0$	$y_0 = \neg(q_2 \oplus z_5)$
$q_4 = x_1 \oplus z_0$	$q_{12}=\neg(z_1\oplus z_9\oplus t_2\oplus t_4)$	$y_1 = z_0 \oplus z_8$
$q_5 = x_0 \oplus z_2$	$t_6=q_{12}\wedge z_2$	$y_2 = q_7 \oplus z_{12}$
$t_2 = q_4 \wedge q_5$	$z_3 = t_5 \oplus t_6$	$y_3 = q_6 \oplus z_{11}$
$q_6 = \neg(x_4 \oplus q_5)$	$z_4 = t_3 \oplus z_3$	$y_4 = x_2 \oplus z_{10}$

• The paper includes all optimized implementations in the appendix

- The paper includes all optimized implementations in the appendix
- Tools to automate this (generate equations, convert to CNF, solve, retrieve result and corresponding implementation) are available online and in the public domain

https://ko.stoffelen.nl/

- The paper includes all optimized implementations in the appendix
- Tools to automate this (generate equations, convert to CNF, solve, retrieve result and corresponding implementation) are available online and in the public domain

https://ko.stoffelen.nl/

• For small functions, our method works quite nicely

- The paper includes all optimized implementations in the appendix
- Tools to automate this (generate equations, convert to CNF, solve, retrieve result and corresponding implementation) are available online and in the public domain

https://ko.stoffelen.nl/

- For small functions, our method works quite nicely
- Not feasible for, say, 8-bit S-boxes because of exponential encoding E.g., RECTANGLE with k = 5, w = 4 already has 21372 variables and 106151 clauses in CNF

- The paper includes all optimized implementations in the appendix
- Tools to automate this (generate equations, convert to CNF, solve, retrieve result and corresponding implementation) are available online and in the public domain

https://ko.stoffelen.nl/

- For small functions, our method works quite nicely
- Not feasible for, say, 8-bit S-boxes because of exponential encoding E.g., RECTANGLE with k = 5, w = 4 already has 21372 variables and 106151 clauses in CNF
- Thanks for your attention

References I

Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson. Efficient methods for conversion and solution of sparse systems of low-degree multivariate polynomials over GF(2) via SAT-solvers. Cryptology ePrint Archive, Report 2007/024, 2007. http://eprint.iacr.org/.

Joan Boyar and René Peralta.

A new combinational logic minimization technique with applications to cryptology. In Paola Festa, editor, *Experimental Algorithms*, volume 6049 of *Lecture Notes in Computer Science*, pages 178–189. Springer Berlin Heidelberg, 2010.

Nicolas Courtois, Theodosis Mourouzis, and Daniel Hulme.

Exact logic minimization and multiplicative complexity of concrete algebraic and cryptographic circuits.

International Journal On Advances in Intelligent Systems, 6(3 and 4):165-176, 2013.

Carsten Fuhs and Peter Schneider-Kamp.

Synthesizing shortest linear straight-line programs over GF(2) using SAT.

In Ofer Strichman and Stefan Szeider, editors, *Theory and Applications of Satisfiability Testing – SAT 2010*, volume 6175 of *Lecture Notes in Computer Science*, pages 71–84. Springer Berlin Heidelberg, 2010.

References II

Theodosis Mourouzis.

Optimizations in Algebraic and Differential Cryptanalysis. PhD thesis, UCL (University College London), 2015.

