Optimizing S-box

Implementations for Several Criteria using SAT Solvers
Ko Stoffelen

Goal

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity

Minimize nonlinear operations (masking, MPC, FHE)

Goal

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity

Minimize nonlinear operations (masking, MPC, FHE)

- Bitslice gate complexity

Use only AND, OR, XOR, NOT (bitsliced software)

Goal

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity

Minimize nonlinear operations (masking, MPC, FHE)

- Bitslice gate complexity

Use only AND, OR, XOR, NOT (bitsliced software)

- Gate complexity

Also use NAND, NOR, XNOR (hardware, area)

Goal

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity

Minimize nonlinear operations (masking, MPC, FHE)

- Bitslice gate complexity

Use only AND, OR, XOR, NOT (bitsliced software)

- Gate complexity

Also use NAND, NOR, XNOR (hardware, area)

- Circuit depth complexity

Trade-off \#gates and depth (hardware, latency)

Goal

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity

Minimize nonlinear operations (masking, MPC, FHE)

- Bitslice gate complexity

Use only AND, OR, XOR, NOT (bitsliced software)

- Gate complexity

Also use NAND, NOR, XNOR (hardware, area)

- Circuit depth complexity

Trade-off \#gates and depth (hardware, latency)

Goal

Provably minimal implementations of small functions with respect to:

- Multiplicative complexity

Minimize nonlinear operations (masking, MPC, FHE)

- Bitslice gate complexity

Use only AND, OR, XOR, NOT (bitsliced software)

- Gate complexity

Also use NAND, NOR, XNOR (hardware, area)

- Circuit depth complexity

Trade-off \#gates and depth (hardware, latency)
Generic solution: encode as SAT instance, solve, retrieve implementation

Encoding the MCDP

Multiplicative Complexity Decision Problem
Given a function f and some positive integer k, is there a circuit that implements f and that uses at most k nonlinear operations?

Encoding the MCDP

Multiplicative Complexity Decision Problem
Given a function f and some positive integer k, is there a circuit that implements f and that uses at most k nonlinear operations?

Encoding by Courtois, Mourouzis, and Hulme [CMH13, Mou15]

- Let x_{i} be variables representing S-box inputs
- Let y_{i} be variables representing S-box outputs
- Let q_{i} be variables representing gate inputs
- Let t_{i} be variables representing gate outputs
- Let a_{i} be variables representing wiring between gates

Encoding the MCDP

Multiplicative Complexity Decision Problem
Given a function f and some positive integer k, is there a circuit that implements f and that uses at most k nonlinear operations?

Encoding by Courtois, Mourouzis, and Hulme [CMH13, Mou15]

- Let x_{i} be variables representing S-box inputs
- Let y_{i} be variables representing S-box outputs
- Let q_{i} be variables representing gate inputs
- Let t_{i} be variables representing gate outputs
- Let a_{i} be variables representing wiring between gates

For example, lets encode a 4×4 S-box with $k=3$

Encoding the MCDP (2)

$$
\begin{aligned}
& q_{0}=a_{0}+a_{1} \cdot x_{0}+a_{2} \cdot x_{1}+a_{3} \cdot x_{2}+a_{4} \cdot x_{3} \\
& q_{1}=a_{5}+a_{6} \cdot x_{0}+a_{7} \cdot x_{1}+a_{8} \cdot x_{2}+a_{9} \cdot x_{3} \\
& t_{0}=q_{0} \cdot q_{1} \\
& q_{2}=a_{10}+a_{11} \cdot x_{0}+a_{12} \cdot x_{1}+a_{13} \cdot x_{2}+a_{14} \cdot x_{3}+a_{15} \cdot t_{0} \\
& q_{3}=a_{16}+a_{17} \cdot x_{0}+a_{18} \cdot x_{1}+a_{19} \cdot x_{2}+a_{20} \cdot x_{3}+a_{21} \cdot t_{0} \\
& t_{1}=q_{2} \cdot q_{3} \\
& q_{4}=a_{22}+a_{23} \cdot x_{0}+a_{24} \cdot x_{1}+a_{25} \cdot x_{2}+a_{26} \cdot x_{3}+a_{27} \cdot t_{0}+a_{28} \cdot t_{1} \\
& q_{5}=a_{29}+a_{30} \cdot x_{0}+a_{31} \cdot x_{1}+a_{32} \cdot x_{2}+a_{33} \cdot x_{3}+a_{34} \cdot t_{0}+a_{35} \cdot t_{1} \\
& t_{2}=q_{4} \cdot q_{5} \\
& y_{0}=a_{36} \cdot x_{0}+a_{37} \cdot x_{1}+a_{38} \cdot x_{2}+a_{39} \cdot x_{3}+a_{40} \cdot t_{0}+a_{41} \cdot t_{1}+a_{42} \cdot t_{2} \\
& y_{1}=a_{43} \cdot x_{0}+a_{44} \cdot x_{1}+a_{45} \cdot x_{2}+a_{46} \cdot x_{3}+a_{47} \cdot t_{0}+a_{48} \cdot t_{1}+a_{49} \cdot t_{2} \\
& y_{2}=a_{50} \cdot x_{0}+a_{51} \cdot x_{1}+a_{52} \cdot x_{2}+a_{53} \cdot x_{3}+a_{54} \cdot t_{0}+a_{55} \cdot t_{1}+a_{56} \cdot t_{2} \\
& y_{3}=a_{57} \cdot x_{0}+a_{58} \cdot x_{1}+a_{59} \cdot x_{2}+a_{60} \cdot x_{3}+a_{61} \cdot t_{0}+a_{62} \cdot t_{1}+a_{63} \cdot t_{2}
\end{aligned}
$$

Encoding the MCDP (3)

Not bound to specific S-box yet

Encoding the MCDP (3)

Not bound to specific S-box yet

- Consider S-box as lookup table with 2^{n} entries (x, y)

Encoding the MCDP (3)

Not bound to specific S-box yet

- Consider S-box as lookup table with 2^{n} entries (x, y)
- A correct circuit works for all possible values

Encoding the MCDP (3)

Not bound to specific S-box yet

- Consider S-box as lookup table with 2^{n} entries (x, y)
- A correct circuit works for all possible values
- Create 2^{n} copies of equations

Note: unfortunately this encoding grows exponentially

Encoding the MCDP (3)

Not bound to specific S-box yet

- Consider S-box as lookup table with 2^{n} entries (x, y)
- A correct circuit works for all possible values
- Create 2^{n} copies of equations

Note: unfortunately this encoding grows exponentially

- Rename $x_{i}, y_{i}, q_{i}, t_{i}$, but not a_{i}

Encoding the MCDP (3)

Not bound to specific S-box yet

- Consider S-box as lookup table with 2^{n} entries (x, y)
- A correct circuit works for all possible values
- Create 2^{n} copies of equations

Note: unfortunately this encoding grows exponentially

- Rename $x_{i}, y_{i}, q_{i}, t_{i}$, but not a_{i}
- Concatenate

Encoding the MCDP (3)

Not bound to specific S-box yet

- Consider S-box as lookup table with 2^{n} entries (x, y)
- A correct circuit works for all possible values
- Create 2^{n} copies of equations

Note: unfortunately this encoding grows exponentially

- Rename $x_{i}, y_{i}, q_{i}, t_{i}$, but not a_{i}
- Concatenate
- Add lookup table (constant equation per bit)

Encoding the MCDP (3)

Not bound to specific S-box yet

- Consider S-box as lookup table with 2^{n} entries (x, y)
- A correct circuit works for all possible values
- Create 2^{n} copies of equations

Note: unfortunately this encoding grows exponentially

- Rename $x_{i}, y_{i}, q_{i}, t_{i}$, but not a_{i}
- Concatenate
- Add lookup table (constant equation per bit)

Encoding the MCDP (3)

Not bound to specific S-box yet

- Consider S-box as lookup table with 2^{n} entries (x, y)
- A correct circuit works for all possible values
- Create 2^{n} copies of equations

Note: unfortunately this encoding grows exponentially

- Rename $x_{i}, y_{i}, q_{i}, t_{i}$, but not a_{i}
- Concatenate
- Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF
Use method by Bard et al. for converting sparse systems of low-degree multivariate polynomials [BCJ07]

Multiplicative complexity results

S-box	Size $n \times m$	Multiplicative complexity
Ascon	5×5	5
ICEPOLE	5×5	6
Keccak/Ketje/Keyak	5×5	5
PRIMATEs	5×5	$\in\{6,7\}$
PRIMATEs $^{-1}$	5×5	$\in\{6,7,8,9,10\}$
Joltik/Piccolo $^{\text {Joltik }}{ }^{-1}$ Piccolo $^{-1}$	4×4	4
LAC 2	4×4	4
Minalpher	4×4	4
Prøst	4×4	5
RECTANGLE	4×4	4
RECTANGLE $^{-1}$	4×4	4

Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit with only gates $\in\{A N D, O R, X O R, N O T\}$ that implements f and that uses at most k gates?

Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit with only gates $\in\{A N D, O R, X O R, N O T\}$ that implements f and that uses at most k gates?

Idea

Hard-code k gates of unknown type:

- Let b_{i} be variables representing wiring inside gates

Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit with only gates $\in\{A N D, O R, X O R, N O T\}$ that implements f and that uses at most k gates?

Idea

Hard-code k gates of unknown type:

- Let b_{i} be variables representing wiring inside gates
- $t_{0}=b_{0} \cdot q_{0} \cdot q_{1}+b_{1} \cdot q_{0}+b_{1} \cdot q_{1}+b_{2}+b_{2} \cdot q_{0}$
$0=b_{0} \cdot b_{2}$
$0=b_{1} \cdot b_{2}$

Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit with only gates $\in\{A N D, O R, X O R, N O T\}$ that implements f and that uses at most k gates?

Idea

Hard-code k gates of unknown type:

- Let b_{i} be variables representing wiring inside gates
- $t_{0}=b_{0} \cdot q_{0} \cdot q_{1}+b_{1} \cdot q_{0}+b_{1} \cdot q_{1}+b_{2}+b_{2} \cdot q_{0}$
$0=b_{0} \cdot b_{2}$
$0=b_{1} \cdot b_{2}$

Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit with only gates $\in\{A N D, O R, X O R, N O T\}$ that implements f and that uses at most k gates?

Idea

Hard-code k gates of unknown type:

- Let b_{i} be variables representing wiring inside gates
- $t_{0}=b_{0} \cdot q_{0} \cdot q_{1}+b_{1} \cdot q_{0}+b_{1} \cdot q_{1}+b_{2}+b_{2} \cdot q_{0}$

$$
0=b_{0} \cdot b_{2}
$$

$$
0=b_{1} \cdot b_{2}
$$

Gate input q_{i} can be precisely one:

- S-box input bit
- Previous gate output bit

Linear combination with additional at-most-1 constraints

Bitslice gate complexity results

S-box	Bitslice gate complexity	Implementation
Keccak/Ketje/Keyak	≤ 13	3 AND, 2 OR, 5 XOR, 3 NOT
Joltik/Piccolo $^{\leq 10}$	1 AND, 3 OR, 4 XOR, 2 NOT	
Joltik $^{-1}$ Piccolo $^{-1}$	10	1 AND, 3 OR, 4 XOR, 2 NOT
LAC	11	2 AND, 2 OR, 6 XOR, 1 NOT
Minalpher	≥ 11	
Prøst	8	4 AND, 4 XOR
RECTANGLE	$\in\{11,12\}$	1 AND, 3 OR, 7 XOR, 1 NOT
RECTANGLE $^{-1}$	$\in\{10,11,12\}$	4 OR, 7 XOR, 1 NOT

Gate complexity

Only difference:
$t_{0}=b_{0} \cdot q_{0} \cdot q_{1}+b_{1} \cdot q_{0}+b_{1} \cdot q_{1}+b_{2}$

$b_{3 i} b_{3 i+1} b_{3 i+2}$	Gate t_{i} function
000	0
001	1
010	$q_{2 i} \oplus q_{2 i+1}$
011	$q_{2 i} \leftrightarrow q_{2 i+1}$
100	$q_{2 i} \wedge q_{2 i+1}$
101	$q_{2 i} \uparrow q_{2 i+1}$
110	$q_{2 i} \vee q_{2 i+1}$
111	$q_{2 i} \downarrow q_{2 i+1}$

Gate complexity results

S-box	Gate complexity	Implementation
Joltik/Piccolo	8	2 OR, 1 XOR, 2 NOR, 3 XNOR
Joltik ${ }^{-1}$ / iccolo $^{-1}$	8	2 OR, 1 XOR, 2 NOR, 3 XNOR
LAC	10	1 AND, 3 OR, 2 XOR, 4 XNOR
Prøst	8	4 AND, 4 XOR
RECTANGLE	$\in\{10,11\}$	1 AND, 1 OR, 2 XOR, 1 NAND, 1 NOR, 5 XNOR
RECTANGLE ${ }^{-1}$	$\in\{10,11\}$	1 AND, 1 OR, 6 XOR, 1 NAND, 1 NOR, 1 XNOR

Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency

Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency
Every function can be implemented in depth 2 (normal forms) However, at the cost of more gates (width)

Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency
Every function can be implemented in depth 2 (normal forms) However, at the cost of more gates (width)

Idea

Introduce maximum width w
Given a function f and some positive integer k, is there a circuit of depth at most k and width at most w that implements f ?

Encoding like gate complexity, but gate input q_{i} is now either S-box input or gate output on previous depth layer

Circuit depth complexity results

S-box	k	w	Implementation	UNSAT bounds
Joltik/Piccolo	4	2	2 OR, 1 XOR, 2 NOR, 3 XNOR	$\begin{aligned} & k=4, w=1 \\ & k=3, w=10 \end{aligned}$
Joltik ${ }^{-1}$ / iccolo $^{-1}$	4	3	3 OR, 5 XOR, 1 NOR, 3 XNOR	$\begin{aligned} & k=4, w=2 \\ & k=3, w=10 \end{aligned}$
LAC	3	6	3 OR, 4 XOR, 4 NAND, 4 XNOR	$\begin{aligned} & k=3, w=4 \\ & k=2, w=10 \end{aligned}$
Prøst	4	3	4 AND, 1 OR, 4 XOR, 1 NAND, 1 XNOR	$\begin{aligned} & k=4, w=2 \\ & k=3, w=10 \end{aligned}$
RECTANGLE	3	6	2 AND, 3 OR, 5 XOR, 1 NAND, 1 NOR, 3 XNOR	$\begin{aligned} & k=3, w=4 \\ & k=2, w=10 \end{aligned}$
RECTANGLE ${ }^{-1}$	3	6	1 OR, 8 XOR, 3 NAND, 2 NOR, 2 XNOR	$\begin{aligned} & k=3, w=4 \\ & k=2, w=10 \end{aligned}$

Combining criteria

What about combinations?

Combining criteria

What about combinations?
Lets optimize PRIMATEs 5×5 S-box

- First for multiplicative complexity
- Then reduce linear gates, i.e. XOR, NOT

Combining criteria

What about combinations?
Lets optimize PRIMATEs 5×5 S-box

- First for multiplicative complexity
- Then reduce linear gates, i.e. XOR, NOT

Apply existing methods for solving the Shortest Linear Straight-Line Program (SLP) problem

- Exact, using SAT solvers (Fuhs-Schneider-Kamp [FSK10])
- Heuristics (Boyar-Peralta [BP10])

SLP

Given \mathbb{F} and constants $a_{i, j} \in \mathbb{F}$, compute linear forms

$$
\begin{gathered}
a_{1,1} x_{1}+a_{1,2} x_{2}+\cdots+a_{1, n} x_{n} \\
a_{2,1} x_{1}+a_{2,2} x_{2}+\cdots+a_{2, n} x_{n} \\
\cdots \\
a_{m, 1} x_{1}+a_{m, 2} x_{2}+\cdots+a_{m, n} x_{n}
\end{gathered}
$$

in the shortest number of program lines of the form

$$
u:=\lambda v+\mu w
$$

where $\lambda, \mu \in \mathbb{F}$

Optimizing PRIMATEs S-box (1)

$$
\begin{aligned}
& q_{0}=x_{0} \oplus x_{3} \\
& q_{1}=x_{1} \\
& t_{0}=q_{0} \vee q_{1} \\
& q_{2}=\neg\left(x_{1} \oplus x_{3}\right) \\
& q_{3}=x_{0} \oplus x_{2} \\
& t_{1}=q_{2} \wedge q_{3} \\
& q_{4}=x_{0} \oplus x_{1} \oplus x_{4} \\
& q_{5}=x_{0} \oplus x_{2} \oplus x_{3} \\
& t_{2}=q_{4} \wedge q_{5} \\
& q_{6}=\neg\left(x_{0} \oplus x_{2} \oplus x_{3} \oplus x_{4}\right) \\
& q_{7}=x_{1} \oplus x_{2} \oplus x_{4} \\
& t_{3}=q_{6} \vee q_{7} \\
& q_{8}=x_{0} \oplus x_{1} \oplus x_{2} \oplus x_{3} \oplus x_{4}
\end{aligned}
$$

Optimizing PRIMATEs S-box (2)

- Treat linear operations before and after nonlinear operations as two separate SLP instances

Optimizing PRIMATEs S-box (2)

- Treat linear operations before and after nonlinear operations as two separate SLP instances
- Try exact method

Optimizing PRIMATEs S-box (2)

- Treat linear operations before and after nonlinear operations as two separate SLP instances
- Try exact method
- If infeasible, try heuristic method

Optimizing PRIMATEs S-box (2)

- Treat linear operations before and after nonlinear operations as two separate SLP instances
- Try exact method
- If infeasible, try heuristic method

Optimizing PRIMATEs S-box (2)

- Treat linear operations before and after nonlinear operations as two separate SLP instances
- Try exact method
- If infeasible, try heuristic method

Managed to reduce 58 XOR gates to 31 XOR gates

Optimizing PRIMATEs S-box (3)

$$
\begin{aligned}
& z_{0}=x_{0} \oplus x_{4} \\
& q_{7}=x_{4} \oplus z_{1} \\
& z_{5}=t_{2} \oplus z_{4} \\
& z_{1}=x_{1} \oplus x_{2} \quad t_{3}=q_{6} \vee q_{7} \\
& z_{2}=x_{2} \oplus x_{3} \\
& q_{8}=q_{4} \oplus z_{2} \\
& z_{6}=t_{1} \oplus t_{6} \\
& z_{7}=t_{4} \oplus z_{5} \\
& q_{0}=x_{0} \oplus x_{3} \\
& z_{9}=t_{0} \oplus t_{3} \\
& z_{8}=t_{1} \oplus z_{7} \\
& t_{0}=q_{0} \vee x_{1} \\
& q_{9}=x_{2} \oplus z_{9} \\
& z_{10}=t_{0} \oplus z_{7} \\
& q_{2}=x_{1} \oplus x_{3} \\
& t_{4}=q_{8} \wedge q_{9} \\
& q_{3}=\neg\left(x_{0} \oplus x_{2}\right) \\
& q_{10}=\neg\left(x_{3} \oplus z_{0}\right) \\
& t_{5}=q_{10} \wedge z_{0} \\
& z_{11}=t_{4} \oplus z_{4} \\
& t_{1}=q_{2} \vee q_{3} \\
& q_{12}=\neg\left(z_{1} \oplus z_{9} \oplus t_{2} \oplus t_{4}\right) \\
& t_{6}=q_{12} \wedge z_{2} \\
& y_{2}=q_{7} \oplus z_{12} \\
& t_{2}=q_{4} \wedge q_{5} \\
& z_{3}=t_{5} \oplus t_{6} \\
& y_{3}=q_{6} \oplus z_{11} \\
& q_{6}=\neg\left(x_{4} \oplus q_{5}\right) \\
& z_{4}=t_{3} \oplus z_{3}
\end{aligned}
$$

Wrapping up...

- The paper includes all optimized implementations in the appendix

Wrapping up...

- The paper includes all optimized implementations in the appendix
- Tools to automate this (generate equations, convert to CNF, solve, retrieve result and corresponding implementation) are available online and in the public domain
https://ko.stoffelen.nl/

Wrapping up...

- The paper includes all optimized implementations in the appendix
- Tools to automate this (generate equations, convert to CNF, solve, retrieve result and corresponding implementation) are available online and in the public domain
https://ko.stoffelen.nl/
- For small functions, our method works quite nicely

Wrapping up...

- The paper includes all optimized implementations in the appendix
- Tools to automate this (generate equations, convert to CNF, solve, retrieve result and corresponding implementation) are available online and in the public domain
https://ko.stoffelen.nl/
- For small functions, our method works quite nicely
- Not feasible for, say, 8-bit S-boxes because of exponential encoding E.g., RECTANGLE with $k=5, w=4$ already has 21372 variables and 106151 clauses in CNF

Wrapping up...

- The paper includes all optimized implementations in the appendix
- Tools to automate this (generate equations, convert to CNF, solve, retrieve result and corresponding implementation) are available online and in the public domain
https://ko.stoffelen.nl/
- For small functions, our method works quite nicely
- Not feasible for, say, 8-bit S-boxes because of exponential encoding E.g., RECTANGLE with $k=5, w=4$ already has 21372 variables and 106151 clauses in CNF
- Thanks for your attention

References I

三
Gregory V．Bard，Nicolas T．Courtois，and Chris Jefferson．
Efficient methods for conversion and solution of sparse systems of low－degree multivariate polynomials over GF（2）via SAT－solvers．
Cryptology ePrint Archive，Report 2007／024， 2007.
http：／／eprint．iacr．org／．
Joan Boyar and René Peralta．
A new combinational logic minimization technique with applications to cryptology．
In Paola Festa，editor，Experimental Algorithms，volume 6049 of Lecture Notes in Computer Science，pages 178－189．Springer Berlin Heidelberg， 2010.

Nicolas Courtois，Theodosis Mourouzis，and Daniel Hulme．
Exact logic minimization and multiplicative complexity of concrete algebraic and cryptographic circuits．
International Journal On Advances in Intelligent Systems，6（3 and 4）：165－176， 2013.
家
Carsten Fuhs and Peter Schneider－Kamp．
Synthesizing shortest linear straight－line programs over GF（2）using SAT．
In Ofer Strichman and Stefan Szeider，editors，Theory and Applications of Satisfiability Testing－SAT 2010，volume 6175 of Lecture Notes in Computer Science，pages 71－84． Springer Berlin Heidelberg， 2010.

References II

Theodosis Mourouzis.
Optimizations in Algebraic and Differential Cryptanalysis.
PhD thesis, UCL (University College London), 2015.

