
Optimizing S-box
Implementations for Several
Criteria using SAT Solvers
Ko Stoffelen



Goal

Provably minimal implementations of small functions with respect to:

• Multiplicative complexity
Minimize nonlinear operations (masking, MPC, FHE)

• Bitslice gate complexity
Use only AND, OR, XOR, NOT (bitsliced software)

• Gate complexity
Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity
Trade-off #gates and depth (hardware, latency)

Generic solution: encode as SAT instance, solve, retrieve implementation



Goal

Provably minimal implementations of small functions with respect to:

• Multiplicative complexity
Minimize nonlinear operations (masking, MPC, FHE)

• Bitslice gate complexity
Use only AND, OR, XOR, NOT (bitsliced software)

• Gate complexity
Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity
Trade-off #gates and depth (hardware, latency)

Generic solution: encode as SAT instance, solve, retrieve implementation



Goal

Provably minimal implementations of small functions with respect to:

• Multiplicative complexity
Minimize nonlinear operations (masking, MPC, FHE)

• Bitslice gate complexity
Use only AND, OR, XOR, NOT (bitsliced software)

• Gate complexity
Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity
Trade-off #gates and depth (hardware, latency)

Generic solution: encode as SAT instance, solve, retrieve implementation



Goal

Provably minimal implementations of small functions with respect to:

• Multiplicative complexity
Minimize nonlinear operations (masking, MPC, FHE)

• Bitslice gate complexity
Use only AND, OR, XOR, NOT (bitsliced software)

• Gate complexity
Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity
Trade-off #gates and depth (hardware, latency)

Generic solution: encode as SAT instance, solve, retrieve implementation



Goal

Provably minimal implementations of small functions with respect to:

• Multiplicative complexity
Minimize nonlinear operations (masking, MPC, FHE)

• Bitslice gate complexity
Use only AND, OR, XOR, NOT (bitsliced software)

• Gate complexity
Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity
Trade-off #gates and depth (hardware, latency)

Generic solution: encode as SAT instance, solve, retrieve implementation



Goal

Provably minimal implementations of small functions with respect to:

• Multiplicative complexity
Minimize nonlinear operations (masking, MPC, FHE)

• Bitslice gate complexity
Use only AND, OR, XOR, NOT (bitsliced software)

• Gate complexity
Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity
Trade-off #gates and depth (hardware, latency)

Generic solution: encode as SAT instance, solve, retrieve implementation



Encoding the MCDP

Multiplicative Complexity Decision Problem
Given a function f and some positive integer k, is there a circuit
that implements f and that uses at most k nonlinear operations?

Encoding by Courtois, Mourouzis, and Hulme [CMH13, Mou15]
• Let xi be variables representing S-box inputs
• Let yi be variables representing S-box outputs
• Let qi be variables representing gate inputs
• Let ti be variables representing gate outputs
• Let ai be variables representing wiring between gates

For example, lets encode a 4x4 S-box with k = 3



Encoding the MCDP

Multiplicative Complexity Decision Problem
Given a function f and some positive integer k, is there a circuit
that implements f and that uses at most k nonlinear operations?

Encoding by Courtois, Mourouzis, and Hulme [CMH13, Mou15]
• Let xi be variables representing S-box inputs
• Let yi be variables representing S-box outputs
• Let qi be variables representing gate inputs
• Let ti be variables representing gate outputs
• Let ai be variables representing wiring between gates

For example, lets encode a 4x4 S-box with k = 3



Encoding the MCDP

Multiplicative Complexity Decision Problem
Given a function f and some positive integer k, is there a circuit
that implements f and that uses at most k nonlinear operations?

Encoding by Courtois, Mourouzis, and Hulme [CMH13, Mou15]
• Let xi be variables representing S-box inputs
• Let yi be variables representing S-box outputs
• Let qi be variables representing gate inputs
• Let ti be variables representing gate outputs
• Let ai be variables representing wiring between gates

For example, lets encode a 4x4 S-box with k = 3



Encoding the MCDP (2)

q0 = a0 + a1 · x0 + a2 · x1 + a3 · x2 + a4 · x3

q1 = a5 + a6 · x0 + a7 · x1 + a8 · x2 + a9 · x3

t0 = q0 · q1

q2 = a10 + a11 · x0 + a12 · x1 + a13 · x2 + a14 · x3 + a15 · t0
q3 = a16 + a17 · x0 + a18 · x1 + a19 · x2 + a20 · x3 + a21 · t0
t1 = q2 · q3

q4 = a22 + a23 · x0 + a24 · x1 + a25 · x2 + a26 · x3 + a27 · t0 + a28 · t1
q5 = a29 + a30 · x0 + a31 · x1 + a32 · x2 + a33 · x3 + a34 · t0 + a35 · t1
t2 = q4 · q5

y0 = a36 · x0 + a37 · x1 + a38 · x2 + a39 · x3 + a40 · t0 + a41 · t1 + a42 · t2
y1 = a43 · x0 + a44 · x1 + a45 · x2 + a46 · x3 + a47 · t0 + a48 · t1 + a49 · t2
y2 = a50 · x0 + a51 · x1 + a52 · x2 + a53 · x3 + a54 · t0 + a55 · t1 + a56 · t2
y3 = a57 · x0 + a58 · x1 + a59 · x2 + a60 · x3 + a61 · t0 + a62 · t1 + a63 · t2



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)
• A correct circuit works for all possible values
• Create 2n copies of equations

Note: unfortunately this encoding grows exponentially
• Rename xi , yi , qi , ti , but not ai
• Concatenate
• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)

• A correct circuit works for all possible values
• Create 2n copies of equations

Note: unfortunately this encoding grows exponentially
• Rename xi , yi , qi , ti , but not ai
• Concatenate
• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)
• A correct circuit works for all possible values

• Create 2n copies of equations
Note: unfortunately this encoding grows exponentially

• Rename xi , yi , qi , ti , but not ai
• Concatenate
• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)
• A correct circuit works for all possible values
• Create 2n copies of equations

Note: unfortunately this encoding grows exponentially

• Rename xi , yi , qi , ti , but not ai
• Concatenate
• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)
• A correct circuit works for all possible values
• Create 2n copies of equations

Note: unfortunately this encoding grows exponentially
• Rename xi , yi , qi , ti , but not ai

• Concatenate
• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)
• A correct circuit works for all possible values
• Create 2n copies of equations

Note: unfortunately this encoding grows exponentially
• Rename xi , yi , qi , ti , but not ai
• Concatenate

• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)
• A correct circuit works for all possible values
• Create 2n copies of equations

Note: unfortunately this encoding grows exponentially
• Rename xi , yi , qi , ti , but not ai
• Concatenate
• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)
• A correct circuit works for all possible values
• Create 2n copies of equations

Note: unfortunately this encoding grows exponentially
• Rename xi , yi , qi , ti , but not ai
• Concatenate
• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)
• A correct circuit works for all possible values
• Create 2n copies of equations

Note: unfortunately this encoding grows exponentially
• Rename xi , yi , qi , ti , but not ai
• Concatenate
• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]



Multiplicative complexity results

S-box Size nxm Multiplicative complexity
Ascon 5x5 5
ICEPOLE 5x5 6
Keccak/Ketje/Keyak 5x5 5
PRIMATEs 5x5 ∈ {6, 7}
PRIMATEs−1 5x5 ∈ {6, 7, 8, 9, 10}
Joltik/Piccolo 4x4 4
Joltik−1/Piccolo−1 4x4 4
LAC 4x4 4
Minalpher 4x4 5
Prøst 4x4 4
RECTANGLE 4x4 4
RECTANGLE−1 4x4 4



Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit
with only gates ∈ {AND, OR, XOR, NOT} that implements f and
that uses at most k gates?

Idea
Hard-code k gates of unknown type:

• Let bi be variables representing wiring inside gates
• t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2 + b2 · q0

0 = b0 · b2
0 = b1 · b2

Gate input qi can be precisely one:
• S-box input bit
• Previous gate output bit
Linear combination with additional at-most-1 constraints



Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit
with only gates ∈ {AND, OR, XOR, NOT} that implements f and
that uses at most k gates?

Idea
Hard-code k gates of unknown type:
• Let bi be variables representing wiring inside gates

• t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2 + b2 · q0
0 = b0 · b2
0 = b1 · b2

Gate input qi can be precisely one:
• S-box input bit
• Previous gate output bit
Linear combination with additional at-most-1 constraints



Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit
with only gates ∈ {AND, OR, XOR, NOT} that implements f and
that uses at most k gates?

Idea
Hard-code k gates of unknown type:
• Let bi be variables representing wiring inside gates
• t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2 + b2 · q0

0 = b0 · b2
0 = b1 · b2

Gate input qi can be precisely one:
• S-box input bit
• Previous gate output bit
Linear combination with additional at-most-1 constraints



Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit
with only gates ∈ {AND, OR, XOR, NOT} that implements f and
that uses at most k gates?

Idea
Hard-code k gates of unknown type:
• Let bi be variables representing wiring inside gates
• t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2 + b2 · q0

0 = b0 · b2
0 = b1 · b2

Gate input qi can be precisely one:
• S-box input bit
• Previous gate output bit
Linear combination with additional at-most-1 constraints



Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit
with only gates ∈ {AND, OR, XOR, NOT} that implements f and
that uses at most k gates?

Idea
Hard-code k gates of unknown type:
• Let bi be variables representing wiring inside gates
• t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2 + b2 · q0

0 = b0 · b2
0 = b1 · b2

Gate input qi can be precisely one:
• S-box input bit
• Previous gate output bit
Linear combination with additional at-most-1 constraints



Bitslice gate complexity results

S-box Bitslice gate
complexity

Implementation

Keccak/Ketje/Keyak ≤ 13 3 AND, 2 OR, 5 XOR, 3 NOT
Joltik/Piccolo 10 1 AND, 3 OR, 4 XOR, 2 NOT
Joltik−1/Piccolo−1 10 1 AND, 3 OR, 4 XOR, 2 NOT
LAC 11 2 AND, 2 OR, 6 XOR, 1 NOT
Minalpher ≥ 11
Prøst 8 4 AND, 4 XOR
RECTANGLE ∈ {11, 12} 1 AND, 3 OR, 7 XOR, 1 NOT
RECTANGLE−1 ∈ {10, 11, 12} 4 OR, 7 XOR, 1 NOT



Gate complexity

Only difference:
t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2

b3ib3i+1b3i+2 Gate ti function
000 0
001 1
010 q2i ⊕ q2i+1
011 q2i ↔ q2i+1
100 q2i ∧ q2i+1
101 q2i ↑ q2i+1
110 q2i ∨ q2i+1
111 q2i ↓ q2i+1



Gate complexity results

S-box Gate
complexity

Implementation

Joltik/Piccolo 8 2 OR, 1 XOR, 2 NOR, 3 XNOR
Joltik−1/Piccolo−1 8 2 OR, 1 XOR, 2 NOR, 3 XNOR
LAC 10 1 AND, 3 OR, 2 XOR, 4 XNOR
Prøst 8 4 AND, 4 XOR
RECTANGLE ∈ {10, 11} 1 AND, 1 OR, 2 XOR, 1 NAND,

1 NOR, 5 XNOR
RECTANGLE−1 ∈ {10, 11} 1 AND, 1 OR, 6 XOR, 1 NAND,

1 NOR, 1 XNOR



Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency

Every function can be implemented in depth 2 (normal forms)
However, at the cost of more gates (width)

Idea
Introduce maximum width w

Given a function f and some positive integer k, is there a circuit
of depth at most k and width at most w that implements f ?

Encoding like gate complexity, but gate input qi is now either S-box input
or gate output on previous depth layer



Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency

Every function can be implemented in depth 2 (normal forms)
However, at the cost of more gates (width)

Idea
Introduce maximum width w

Given a function f and some positive integer k, is there a circuit
of depth at most k and width at most w that implements f ?

Encoding like gate complexity, but gate input qi is now either S-box input
or gate output on previous depth layer



Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency

Every function can be implemented in depth 2 (normal forms)
However, at the cost of more gates (width)

Idea
Introduce maximum width w

Given a function f and some positive integer k, is there a circuit
of depth at most k and width at most w that implements f ?

Encoding like gate complexity, but gate input qi is now either S-box input
or gate output on previous depth layer



Circuit depth complexity results

S-box k w Implementation UNSAT bounds
Joltik/Piccolo 4 2 2 OR, 1 XOR,

2 NOR, 3 XNOR
k = 4,w = 1
k = 3,w = 10

Joltik−1/Piccolo−1 4 3 3 OR, 5 XOR,
1 NOR, 3 XNOR

k = 4,w = 2
k = 3,w = 10

LAC 3 6 3 OR, 4 XOR,
4 NAND, 4 XNOR

k = 3,w = 4
k = 2,w = 10

Prøst 4 3 4 AND, 1 OR, 4 XOR,
1 NAND, 1 XNOR

k = 4,w = 2
k = 3,w = 10

RECTANGLE 3 6 2 AND, 3 OR, 5 XOR,
1 NAND, 1 NOR, 3 XNOR

k = 3,w = 4
k = 2,w = 10

RECTANGLE−1 3 6 1 OR, 8 XOR,
3 NAND, 2 NOR, 2 XNOR

k = 3,w = 4
k = 2,w = 10



Combining criteria

What about combinations?

Lets optimize PRIMATEs 5x5 S-box
• First for multiplicative complexity
• Then reduce linear gates, i.e. XOR, NOT

Apply existing methods for solving the Shortest Linear Straight-Line
Program (SLP) problem
• Exact, using SAT solvers (Fuhs–Schneider-Kamp [FSK10])
• Heuristics (Boyar–Peralta [BP10])



Combining criteria

What about combinations?

Lets optimize PRIMATEs 5x5 S-box
• First for multiplicative complexity
• Then reduce linear gates, i.e. XOR, NOT

Apply existing methods for solving the Shortest Linear Straight-Line
Program (SLP) problem
• Exact, using SAT solvers (Fuhs–Schneider-Kamp [FSK10])
• Heuristics (Boyar–Peralta [BP10])



Combining criteria

What about combinations?

Lets optimize PRIMATEs 5x5 S-box
• First for multiplicative complexity
• Then reduce linear gates, i.e. XOR, NOT

Apply existing methods for solving the Shortest Linear Straight-Line
Program (SLP) problem
• Exact, using SAT solvers (Fuhs–Schneider-Kamp [FSK10])
• Heuristics (Boyar–Peralta [BP10])



SLP

Given F and constants ai,j ∈ F, compute linear forms

a1,1x1 + a1,2x2 + · · ·+ a1,nxn
a2,1x1 + a2,2x2 + · · ·+ a2,nxn

. . .

am,1x1 + am,2x2 + · · ·+ am,nxn

in the shortest number of program lines of the form

u := λv + µw

where λ, µ ∈ F



Optimizing PRIMATEs S-box (1)

q0 = x0 ⊕ x3

q1 = x1

t0 = q0 ∨ q1

q2 = ¬(x1 ⊕ x3)

q3 = x0 ⊕ x2

t1 = q2 ∧ q3

q4 = x0 ⊕ x1 ⊕ x4

q5 = x0 ⊕ x2 ⊕ x3

t2 = q4 ∧ q5

q6 = ¬(x0 ⊕ x2 ⊕ x3 ⊕ x4)

q7 = x1 ⊕ x2 ⊕ x4

t3 = q6 ∨ q7

q8 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

q9 = x2 ⊕ t0 ⊕ t3
t4 = q8 ∧ q9

q10 = x0 ⊕ x3 ⊕ x4

q11 = ¬(x0 ⊕ x4)

t5 = q10 ∨ q11

q12 = ¬(x1 ⊕ x2 ⊕ t0 ⊕ t2 ⊕ t3 ⊕ t4)

q13 = x2 ⊕ x3

t6 = q12 ∧ q13

y0 = x1 ⊕ x3 ⊕ t2 ⊕ t3 ⊕ t5 ⊕ t6
y1 = x0 ⊕ x4 ⊕ t1 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6
y2 = x1 ⊕ x2 ⊕ x4 ⊕ t1 ⊕ t3 ⊕ t4 ⊕ t5
y3 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6
y4 = ¬(x2 ⊕ t0 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6)



Optimizing PRIMATEs S-box (2)

• Treat linear operations before and after nonlinear operations as two
separate SLP instances

• Try exact method
• If infeasible, try heuristic method

Managed to reduce 58 XOR gates to 31 XOR gates



Optimizing PRIMATEs S-box (2)

• Treat linear operations before and after nonlinear operations as two
separate SLP instances

• Try exact method

• If infeasible, try heuristic method

Managed to reduce 58 XOR gates to 31 XOR gates



Optimizing PRIMATEs S-box (2)

• Treat linear operations before and after nonlinear operations as two
separate SLP instances

• Try exact method
• If infeasible, try heuristic method

Managed to reduce 58 XOR gates to 31 XOR gates



Optimizing PRIMATEs S-box (2)

• Treat linear operations before and after nonlinear operations as two
separate SLP instances

• Try exact method
• If infeasible, try heuristic method

Managed to reduce 58 XOR gates to 31 XOR gates



Optimizing PRIMATEs S-box (2)

• Treat linear operations before and after nonlinear operations as two
separate SLP instances

• Try exact method
• If infeasible, try heuristic method

Managed to reduce 58 XOR gates to 31 XOR gates



Optimizing PRIMATEs S-box (3)

z0 = x0 ⊕ x4
z1 = x1 ⊕ x2
z2 = x2 ⊕ x3
q0 = x0 ⊕ x3
t0 = q0 ∨ x1
q2 = x1 ⊕ x3
q3 = ¬(x0 ⊕ x2)
t1 = q2 ∨ q3
q4 = x1 ⊕ z0
q5 = x0 ⊕ z2
t2 = q4 ∧ q5
q6 = ¬(x4 ⊕ q5)

q7 = x4 ⊕ z1
t3 = q6 ∨ q7
q8 = q4 ⊕ z2
z9 = t0 ⊕ t3
q9 = x2 ⊕ z9
t4 = q8 ∧ q9

q10 = ¬(x3 ⊕ z0)
t5 = q10 ∧ z0

q12 = ¬(z1 ⊕ z9 ⊕ t2 ⊕ t4)
t6 = q12 ∧ z2
z3 = t5 ⊕ t6
z4 = t3 ⊕ z3

z5 = t2 ⊕ z4
z6 = t1 ⊕ t6
z7 = t4 ⊕ z5
z8 = t1 ⊕ z7

z10 = t0 ⊕ z7
z11 = t4 ⊕ z4
z12 = z6 ⊕ z11
y0 = ¬(q2 ⊕ z5)
y1 = z0 ⊕ z8
y2 = q7 ⊕ z12
y3 = q6 ⊕ z11
y4 = x2 ⊕ z10



Wrapping up. . .

• The paper includes all optimized implementations in the appendix

• Tools to automate this (generate equations, convert to CNF, solve,
retrieve result and corresponding implementation) are available online
and in the public domain
https://ko.stoffelen.nl/

• For small functions, our method works quite nicely

• Not feasible for, say, 8-bit S-boxes because of exponential encoding
E.g., RECTANGLE with k = 5,w = 4 already has 21372 variables and
106151 clauses in CNF

• Thanks for your attention

https://ko.stoffelen.nl/


Wrapping up. . .

• The paper includes all optimized implementations in the appendix
• Tools to automate this (generate equations, convert to CNF, solve,

retrieve result and corresponding implementation) are available online
and in the public domain
https://ko.stoffelen.nl/

• For small functions, our method works quite nicely

• Not feasible for, say, 8-bit S-boxes because of exponential encoding
E.g., RECTANGLE with k = 5,w = 4 already has 21372 variables and
106151 clauses in CNF

• Thanks for your attention

https://ko.stoffelen.nl/


Wrapping up. . .

• The paper includes all optimized implementations in the appendix
• Tools to automate this (generate equations, convert to CNF, solve,

retrieve result and corresponding implementation) are available online
and in the public domain
https://ko.stoffelen.nl/

• For small functions, our method works quite nicely

• Not feasible for, say, 8-bit S-boxes because of exponential encoding
E.g., RECTANGLE with k = 5,w = 4 already has 21372 variables and
106151 clauses in CNF

• Thanks for your attention

https://ko.stoffelen.nl/


Wrapping up. . .

• The paper includes all optimized implementations in the appendix
• Tools to automate this (generate equations, convert to CNF, solve,

retrieve result and corresponding implementation) are available online
and in the public domain
https://ko.stoffelen.nl/

• For small functions, our method works quite nicely

• Not feasible for, say, 8-bit S-boxes because of exponential encoding
E.g., RECTANGLE with k = 5,w = 4 already has 21372 variables and
106151 clauses in CNF

• Thanks for your attention

https://ko.stoffelen.nl/


Wrapping up. . .

• The paper includes all optimized implementations in the appendix
• Tools to automate this (generate equations, convert to CNF, solve,

retrieve result and corresponding implementation) are available online
and in the public domain
https://ko.stoffelen.nl/

• For small functions, our method works quite nicely

• Not feasible for, say, 8-bit S-boxes because of exponential encoding
E.g., RECTANGLE with k = 5,w = 4 already has 21372 variables and
106151 clauses in CNF

• Thanks for your attention

https://ko.stoffelen.nl/


References I

Gregory V. Bard, Nicolas T. Courtois, and Chris Jefferson.
Efficient methods for conversion and solution of sparse systems of low-degree
multivariate polynomials over GF(2) via SAT-solvers.
Cryptology ePrint Archive, Report 2007/024, 2007.
http://eprint.iacr.org/.

Joan Boyar and René Peralta.
A new combinational logic minimization technique with applications to cryptology.
In Paola Festa, editor, Experimental Algorithms, volume 6049 of Lecture Notes in
Computer Science, pages 178–189. Springer Berlin Heidelberg, 2010.

Nicolas Courtois, Theodosis Mourouzis, and Daniel Hulme.
Exact logic minimization and multiplicative complexity of concrete algebraic and
cryptographic circuits.
International Journal On Advances in Intelligent Systems, 6(3 and 4):165–176, 2013.

Carsten Fuhs and Peter Schneider-Kamp.
Synthesizing shortest linear straight-line programs over GF(2) using SAT.
In Ofer Strichman and Stefan Szeider, editors, Theory and Applications of Satisfiability
Testing – SAT 2010, volume 6175 of Lecture Notes in Computer Science, pages 71–84.
Springer Berlin Heidelberg, 2010.

http://eprint.iacr.org/


References II

Theodosis Mourouzis.
Optimizations in Algebraic and Differential Cryptanalysis.
PhD thesis, UCL (University College London), 2015.


