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Goal

Provably minimal implementations of small functions with respect to:

• Multiplicative complexity
Minimize nonlinear operations (masking, MPC, FHE)

• Bitslice gate complexity
Use only AND, OR, XOR, NOT (bitsliced software)

• Gate complexity
Also use NAND, NOR, XNOR (hardware, area)

• Circuit depth complexity
Trade-off #gates and depth (hardware, latency)

Generic solution: encode as SAT instance, solve, retrieve implementation
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Encoding the MCDP

Multiplicative Complexity Decision Problem
Given a function f and some positive integer k, is there a circuit
that implements f and that uses at most k nonlinear operations?

Encoding by Courtois, Mourouzis, and Hulme [CMH13, Mou15]
• Let xi be variables representing S-box inputs
• Let yi be variables representing S-box outputs
• Let qi be variables representing gate inputs
• Let ti be variables representing gate outputs
• Let ai be variables representing wiring between gates

For example, lets encode a 4x4 S-box with k = 3
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Encoding the MCDP (2)

q0 = a0 + a1 · x0 + a2 · x1 + a3 · x2 + a4 · x3

q1 = a5 + a6 · x0 + a7 · x1 + a8 · x2 + a9 · x3

t0 = q0 · q1

q2 = a10 + a11 · x0 + a12 · x1 + a13 · x2 + a14 · x3 + a15 · t0
q3 = a16 + a17 · x0 + a18 · x1 + a19 · x2 + a20 · x3 + a21 · t0
t1 = q2 · q3

q4 = a22 + a23 · x0 + a24 · x1 + a25 · x2 + a26 · x3 + a27 · t0 + a28 · t1
q5 = a29 + a30 · x0 + a31 · x1 + a32 · x2 + a33 · x3 + a34 · t0 + a35 · t1
t2 = q4 · q5

y0 = a36 · x0 + a37 · x1 + a38 · x2 + a39 · x3 + a40 · t0 + a41 · t1 + a42 · t2
y1 = a43 · x0 + a44 · x1 + a45 · x2 + a46 · x3 + a47 · t0 + a48 · t1 + a49 · t2
y2 = a50 · x0 + a51 · x1 + a52 · x2 + a53 · x3 + a54 · t0 + a55 · t1 + a56 · t2
y3 = a57 · x0 + a58 · x1 + a59 · x2 + a60 · x3 + a61 · t0 + a62 · t1 + a63 · t2



Encoding the MCDP (3)

Not bound to specific S-box yet

• Consider S-box as lookup table with 2n entries (x , y)
• A correct circuit works for all possible values
• Create 2n copies of equations

Note: unfortunately this encoding grows exponentially
• Rename xi , yi , qi , ti , but not ai
• Concatenate
• Add lookup table (constant equation per bit)

These equations are in ANF, but SAT solvers require CNF

Use method by Bard et al. for converting sparse systems of low-degree
multivariate polynomials [BCJ07]
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Multiplicative complexity results

S-box Size nxm Multiplicative complexity
Ascon 5x5 5
ICEPOLE 5x5 6
Keccak/Ketje/Keyak 5x5 5
PRIMATEs 5x5 ∈ {6, 7}
PRIMATEs−1 5x5 ∈ {6, 7, 8, 9, 10}
Joltik/Piccolo 4x4 4
Joltik−1/Piccolo−1 4x4 4
LAC 4x4 4
Minalpher 4x4 5
Prøst 4x4 4
RECTANGLE 4x4 4
RECTANGLE−1 4x4 4



Bitslice gate complexity

Given a function f and some positive integer k, is there a circuit
with only gates ∈ {AND, OR, XOR, NOT} that implements f and
that uses at most k gates?

Idea
Hard-code k gates of unknown type:

• Let bi be variables representing wiring inside gates
• t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2 + b2 · q0

0 = b0 · b2
0 = b1 · b2

Gate input qi can be precisely one:
• S-box input bit
• Previous gate output bit
Linear combination with additional at-most-1 constraints
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Bitslice gate complexity results

S-box Bitslice gate
complexity

Implementation

Keccak/Ketje/Keyak ≤ 13 3 AND, 2 OR, 5 XOR, 3 NOT
Joltik/Piccolo 10 1 AND, 3 OR, 4 XOR, 2 NOT
Joltik−1/Piccolo−1 10 1 AND, 3 OR, 4 XOR, 2 NOT
LAC 11 2 AND, 2 OR, 6 XOR, 1 NOT
Minalpher ≥ 11
Prøst 8 4 AND, 4 XOR
RECTANGLE ∈ {11, 12} 1 AND, 3 OR, 7 XOR, 1 NOT
RECTANGLE−1 ∈ {10, 11, 12} 4 OR, 7 XOR, 1 NOT



Gate complexity

Only difference:
t0 = b0 · q0 · q1 + b1 · q0 + b1 · q1 + b2

b3ib3i+1b3i+2 Gate ti function
000 0
001 1
010 q2i ⊕ q2i+1
011 q2i ↔ q2i+1
100 q2i ∧ q2i+1
101 q2i ↑ q2i+1
110 q2i ∨ q2i+1
111 q2i ↓ q2i+1



Gate complexity results

S-box Gate
complexity

Implementation

Joltik/Piccolo 8 2 OR, 1 XOR, 2 NOR, 3 XNOR
Joltik−1/Piccolo−1 8 2 OR, 1 XOR, 2 NOR, 3 XNOR
LAC 10 1 AND, 3 OR, 2 XOR, 4 XNOR
Prøst 8 4 AND, 4 XOR
RECTANGLE ∈ {10, 11} 1 AND, 1 OR, 2 XOR, 1 NAND,

1 NOR, 5 XNOR
RECTANGLE−1 ∈ {10, 11} 1 AND, 1 OR, 6 XOR, 1 NAND,

1 NOR, 1 XNOR



Circuit depth complexity

Decreasing the depth of a circuit allows for increasing the clock frequency

Every function can be implemented in depth 2 (normal forms)
However, at the cost of more gates (width)

Idea
Introduce maximum width w

Given a function f and some positive integer k, is there a circuit
of depth at most k and width at most w that implements f ?

Encoding like gate complexity, but gate input qi is now either S-box input
or gate output on previous depth layer
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Circuit depth complexity results

S-box k w Implementation UNSAT bounds
Joltik/Piccolo 4 2 2 OR, 1 XOR,

2 NOR, 3 XNOR
k = 4,w = 1
k = 3,w = 10

Joltik−1/Piccolo−1 4 3 3 OR, 5 XOR,
1 NOR, 3 XNOR

k = 4,w = 2
k = 3,w = 10

LAC 3 6 3 OR, 4 XOR,
4 NAND, 4 XNOR

k = 3,w = 4
k = 2,w = 10

Prøst 4 3 4 AND, 1 OR, 4 XOR,
1 NAND, 1 XNOR

k = 4,w = 2
k = 3,w = 10

RECTANGLE 3 6 2 AND, 3 OR, 5 XOR,
1 NAND, 1 NOR, 3 XNOR

k = 3,w = 4
k = 2,w = 10

RECTANGLE−1 3 6 1 OR, 8 XOR,
3 NAND, 2 NOR, 2 XNOR

k = 3,w = 4
k = 2,w = 10



Combining criteria

What about combinations?

Lets optimize PRIMATEs 5x5 S-box
• First for multiplicative complexity
• Then reduce linear gates, i.e. XOR, NOT

Apply existing methods for solving the Shortest Linear Straight-Line
Program (SLP) problem
• Exact, using SAT solvers (Fuhs–Schneider-Kamp [FSK10])
• Heuristics (Boyar–Peralta [BP10])
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SLP

Given F and constants ai,j ∈ F, compute linear forms

a1,1x1 + a1,2x2 + · · ·+ a1,nxn
a2,1x1 + a2,2x2 + · · ·+ a2,nxn

. . .

am,1x1 + am,2x2 + · · ·+ am,nxn

in the shortest number of program lines of the form

u := λv + µw

where λ, µ ∈ F



Optimizing PRIMATEs S-box (1)

q0 = x0 ⊕ x3

q1 = x1

t0 = q0 ∨ q1

q2 = ¬(x1 ⊕ x3)

q3 = x0 ⊕ x2

t1 = q2 ∧ q3

q4 = x0 ⊕ x1 ⊕ x4

q5 = x0 ⊕ x2 ⊕ x3

t2 = q4 ∧ q5

q6 = ¬(x0 ⊕ x2 ⊕ x3 ⊕ x4)

q7 = x1 ⊕ x2 ⊕ x4

t3 = q6 ∨ q7

q8 = x0 ⊕ x1 ⊕ x2 ⊕ x3 ⊕ x4

q9 = x2 ⊕ t0 ⊕ t3
t4 = q8 ∧ q9

q10 = x0 ⊕ x3 ⊕ x4

q11 = ¬(x0 ⊕ x4)

t5 = q10 ∨ q11

q12 = ¬(x1 ⊕ x2 ⊕ t0 ⊕ t2 ⊕ t3 ⊕ t4)

q13 = x2 ⊕ x3

t6 = q12 ∧ q13

y0 = x1 ⊕ x3 ⊕ t2 ⊕ t3 ⊕ t5 ⊕ t6
y1 = x0 ⊕ x4 ⊕ t1 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6
y2 = x1 ⊕ x2 ⊕ x4 ⊕ t1 ⊕ t3 ⊕ t4 ⊕ t5
y3 = x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6
y4 = ¬(x2 ⊕ t0 ⊕ t2 ⊕ t3 ⊕ t4 ⊕ t5 ⊕ t6)



Optimizing PRIMATEs S-box (2)

• Treat linear operations before and after nonlinear operations as two
separate SLP instances

• Try exact method
• If infeasible, try heuristic method

Managed to reduce 58 XOR gates to 31 XOR gates
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Optimizing PRIMATEs S-box (3)

z0 = x0 ⊕ x4
z1 = x1 ⊕ x2
z2 = x2 ⊕ x3
q0 = x0 ⊕ x3
t0 = q0 ∨ x1
q2 = x1 ⊕ x3
q3 = ¬(x0 ⊕ x2)
t1 = q2 ∨ q3
q4 = x1 ⊕ z0
q5 = x0 ⊕ z2
t2 = q4 ∧ q5
q6 = ¬(x4 ⊕ q5)

q7 = x4 ⊕ z1
t3 = q6 ∨ q7
q8 = q4 ⊕ z2
z9 = t0 ⊕ t3
q9 = x2 ⊕ z9
t4 = q8 ∧ q9

q10 = ¬(x3 ⊕ z0)
t5 = q10 ∧ z0

q12 = ¬(z1 ⊕ z9 ⊕ t2 ⊕ t4)
t6 = q12 ∧ z2
z3 = t5 ⊕ t6
z4 = t3 ⊕ z3

z5 = t2 ⊕ z4
z6 = t1 ⊕ t6
z7 = t4 ⊕ z5
z8 = t1 ⊕ z7

z10 = t0 ⊕ z7
z11 = t4 ⊕ z4
z12 = z6 ⊕ z11
y0 = ¬(q2 ⊕ z5)
y1 = z0 ⊕ z8
y2 = q7 ⊕ z12
y3 = q6 ⊕ z11
y4 = x2 ⊕ z10



Wrapping up. . .

• The paper includes all optimized implementations in the appendix

• Tools to automate this (generate equations, convert to CNF, solve,
retrieve result and corresponding implementation) are available online
and in the public domain
https://ko.stoffelen.nl/

• For small functions, our method works quite nicely

• Not feasible for, say, 8-bit S-boxes because of exponential encoding
E.g., RECTANGLE with k = 5,w = 4 already has 21372 variables and
106151 clauses in CNF

• Thanks for your attention

https://ko.stoffelen.nl/
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