
Instruction Scheduling and
Register Allocation on ARM
Cortex-M
Ko Stoffelen



Problem

How to write high-speed (assembly) code for microprocessors, when
insufficient registers and slow memory loads are the bottleneck?

Answer:
Proper instruction scheduling and register allocation, including efficient
spill code generation

But how?

2/18



Problem

How to write high-speed (assembly) code for microprocessors, when
insufficient registers and slow memory loads are the bottleneck?

Answer:
Proper instruction scheduling and register allocation, including efficient
spill code generation

But how?

2/18



Problem

How to write high-speed (assembly) code for microprocessors, when
insufficient registers and slow memory loads are the bottleneck?

Answer:
Proper instruction scheduling and register allocation, including efficient
spill code generation

But how?

2/18



Old problems in CS

Instruction scheduling

Given program as CPU instructions, reorder them to
minimize pipeline stalls (without changing semantics)

Register allocation

Given program as CPU instructions, assign physical registers
to variables such that spilling overhead is minimized

Problems are hard (NP-complete), intensively studied, and related

3/18



Old problems in CS

Instruction scheduling

Given program as CPU instructions, reorder them to
minimize pipeline stalls (without changing semantics)

Register allocation

Given program as CPU instructions, assign physical registers
to variables such that spilling overhead is minimized

Problems are hard (NP-complete), intensively studied, and related

3/18



Old problems in CS

Instruction scheduling

Given program as CPU instructions, reorder them to
minimize pipeline stalls (without changing semantics)

Register allocation

Given program as CPU instructions, assign physical registers
to variables such that spilling overhead is minimized

Problems are hard (NP-complete), intensively studied, and related

3/18



Classic approach A: Chaitin-Briggs

• Original idea in 1981 [CAC+81, Cha82], many improvements later

• Write program in SSA form to allocate live ranges
v1 = v1 + v0 7→ v1’ = v1 + v0

v1’

v1

v0

• Build interference graph G
– Nodes represent live ranges
– Edges represent interference between live ranges

• n-coloring exists if highest degree < n

4/18



Classic approach A: Chaitin-Briggs

• Original idea in 1981 [CAC+81, Cha82], many improvements later
• Write program in SSA form to allocate live ranges

v1 = v1 + v0 7→ v1’ = v1 + v0

v1’

v1

v0

• Build interference graph G
– Nodes represent live ranges
– Edges represent interference between live ranges

• n-coloring exists if highest degree < n

4/18



Classic approach A: Chaitin-Briggs

• Original idea in 1981 [CAC+81, Cha82], many improvements later
• Write program in SSA form to allocate live ranges

v1 = v1 + v0 7→ v1’ = v1 + v0

v1’

v1

v0

• Build interference graph G
– Nodes represent live ranges
– Edges represent interference between live ranges

• n-coloring exists if highest degree < n

4/18



Classic approach A: Chaitin-Briggs

• Original idea in 1981 [CAC+81, Cha82], many improvements later
• Write program in SSA form to allocate live ranges

v1 = v1 + v0 7→ v1’ = v1 + v0

v1’

v1

v0

• Build interference graph G
– Nodes represent live ranges
– Edges represent interference between live ranges

• n-coloring exists if highest degree < n

4/18



Classic approach A: Chaitin-Briggs

while G has no n-coloring do
while ∃v ∈ G with deg(v) < n do

Remove v and its edges from G and push v on stack;
end
if G = ∅ then

while Stack 6= [] do
Pop v from stack, add v back to G ;
Color v ;

end
else

Choose a node v to spill;
Remove v and its edges from G ;

end
end

5/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d e

e

c

da

b

Stack = []

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d e

e

c

da

b

Stack = [a]

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d e

e

c

da

b

Stack = [a, c]

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d e

e

c

da

b

Stack = [a, c , b]

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d

e

e

c

da

b

Stack = [a, c , b, d ]

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d ee

c

da

b

Stack = [a, c , b, d , e]

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d e

e

c

da

b

Stack = [a, c , b, d ]

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d e

e

c

d

a

b

Stack = [a, c , b]

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d e

e

c

d

a

b

Stack = [a, c]

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d e

e

c

d

a

b

Stack = [a]

6/18



Classic approach A: Chaitin-Briggs

For example, n = 3.

a

c

b

d e

e

c

da

b

Stack = []

6/18



Classic approach A: Chaitin-Briggs

• Double representation of graph

• How to choose node to spill?
• How to choose color to use?
• Many improvements

– Rematerialization
– Live range splitting

• But still:
– Multiple passes through program
– Graph often rebuilt

7/18



Classic approach A: Chaitin-Briggs

• Double representation of graph
• How to choose node to spill?

• How to choose color to use?
• Many improvements

– Rematerialization
– Live range splitting

• But still:
– Multiple passes through program
– Graph often rebuilt

7/18



Classic approach A: Chaitin-Briggs

• Double representation of graph
• How to choose node to spill?
• How to choose color to use?

• Many improvements
– Rematerialization
– Live range splitting

• But still:
– Multiple passes through program
– Graph often rebuilt

7/18



Classic approach A: Chaitin-Briggs

• Double representation of graph
• How to choose node to spill?
• How to choose color to use?
• Many improvements

– Rematerialization
– Live range splitting

• But still:
– Multiple passes through program
– Graph often rebuilt

7/18



Classic approach A: Chaitin-Briggs

• Double representation of graph
• How to choose node to spill?
• How to choose color to use?
• Many improvements

– Rematerialization
– Live range splitting

• But still:
– Multiple passes through program
– Graph often rebuilt

7/18



Classic approach B: linear scan

• Chaitin-Briggs too slow for JIT

• Linear scan by Poletto and Sarkar [PS99]

L = list of live ranges, sorted by start point;
A = list of allocated active live ranges;
foreach l ∈ L do

Remove expired live ranges from A, if any;
if length(A) = n then

Choose live range l ′ ∈ A that ends furthest away;
Spill l ′, remove l ′ from A;

end
Allocate l , add l to A;

end

• Generated code only ≈ 10% slower

8/18



Classic approach B: linear scan

• Chaitin-Briggs too slow for JIT
• Linear scan by Poletto and Sarkar [PS99]

L = list of live ranges, sorted by start point;
A = list of allocated active live ranges;
foreach l ∈ L do

Remove expired live ranges from A, if any;
if length(A) = n then

Choose live range l ′ ∈ A that ends furthest away;
Spill l ′, remove l ′ from A;

end
Allocate l , add l to A;

end

• Generated code only ≈ 10% slower

8/18



Classic approach B: linear scan

• Chaitin-Briggs too slow for JIT
• Linear scan by Poletto and Sarkar [PS99]

L = list of live ranges, sorted by start point;
A = list of allocated active live ranges;
foreach l ∈ L do

Remove expired live ranges from A, if any;
if length(A) = n then

Choose live range l ′ ∈ A that ends furthest away;
Spill l ′, remove l ′ from A;

end
Allocate l , add l to A;

end

• Generated code only ≈ 10% slower

8/18



Classic approach B: linear scan

• Chaitin-Briggs too slow for JIT
• Linear scan by Poletto and Sarkar [PS99]

L = list of live ranges, sorted by start point;
A = list of allocated active live ranges;
foreach l ∈ L do

Remove expired live ranges from A, if any;
if length(A) = n then

Choose live range l ′ ∈ A that ends furthest away;
Spill l ′, remove l ′ from A;

end
Allocate l , add l to A;

end

• Generated code only ≈ 10% slower

8/18



Classic approach B: linear scan

• Chaitin-Briggs too slow for JIT
• Linear scan by Poletto and Sarkar [PS99]

L = list of live ranges, sorted by start point;
A = list of allocated active live ranges;
foreach l ∈ L do

Remove expired live ranges from A, if any;
if length(A) = n then

Choose live range l ′ ∈ A that ends furthest away;
Spill l ′, remove l ′ from A;

end
Allocate l , add l to A;

end

• Generated code only ≈ 10% slower

8/18



Compilers: GCC

• Instruction scheduling, register allocation, instruction scheduling

• First integrated register allocator (IRA), then local (LRA)
• Like Chaitin-Briggs
• Region-based
• Region choice based on register pressure

9/18



Compilers: GCC

• Instruction scheduling, register allocation, instruction scheduling
• First integrated register allocator (IRA), then local (LRA)

• Like Chaitin-Briggs
• Region-based
• Region choice based on register pressure

9/18



Compilers: GCC

• Instruction scheduling, register allocation, instruction scheduling
• First integrated register allocator (IRA), then local (LRA)
• Like Chaitin-Briggs

• Region-based
• Region choice based on register pressure

9/18



Compilers: GCC

• Instruction scheduling, register allocation, instruction scheduling
• First integrated register allocator (IRA), then local (LRA)
• Like Chaitin-Briggs
• Region-based

• Region choice based on register pressure

9/18



Compilers: GCC

• Instruction scheduling, register allocation, instruction scheduling
• First integrated register allocator (IRA), then local (LRA)
• Like Chaitin-Briggs
• Region-based
• Region choice based on register pressure

9/18



Compilers: Clang

• Since LLVM 3.0, basic and greedy (and PBQP) allocator

• Chaitin-Briggs assumes constant live ranges, machine code cannot
change while running

• Based on linear-scan
• Priority queue with spill weights
• Live range splitting
• Accomodates architecture-specific preferences

Thumb-2: 16-bit encoding when using r0-r7

10/18



Compilers: Clang

• Since LLVM 3.0, basic and greedy (and PBQP) allocator
• Chaitin-Briggs assumes constant live ranges, machine code cannot

change while running

• Based on linear-scan
• Priority queue with spill weights
• Live range splitting
• Accomodates architecture-specific preferences

Thumb-2: 16-bit encoding when using r0-r7

10/18



Compilers: Clang

• Since LLVM 3.0, basic and greedy (and PBQP) allocator
• Chaitin-Briggs assumes constant live ranges, machine code cannot

change while running
• Based on linear-scan

• Priority queue with spill weights
• Live range splitting
• Accomodates architecture-specific preferences

Thumb-2: 16-bit encoding when using r0-r7

10/18



Compilers: Clang

• Since LLVM 3.0, basic and greedy (and PBQP) allocator
• Chaitin-Briggs assumes constant live ranges, machine code cannot

change while running
• Based on linear-scan
• Priority queue with spill weights

• Live range splitting
• Accomodates architecture-specific preferences

Thumb-2: 16-bit encoding when using r0-r7

10/18



Compilers: Clang

• Since LLVM 3.0, basic and greedy (and PBQP) allocator
• Chaitin-Briggs assumes constant live ranges, machine code cannot

change while running
• Based on linear-scan
• Priority queue with spill weights
• Live range splitting

• Accomodates architecture-specific preferences
Thumb-2: 16-bit encoding when using r0-r7

10/18



Compilers: Clang

• Since LLVM 3.0, basic and greedy (and PBQP) allocator
• Chaitin-Briggs assumes constant live ranges, machine code cannot

change while running
• Based on linear-scan
• Priority queue with spill weights
• Live range splitting
• Accomodates architecture-specific preferences

Thumb-2: 16-bit encoding when using r0-r7

10/18



Compilers: ARM Compiler

• Commercial, closed-source until 5.x

• Based on LLVM/Clang since 6.0 (2014)
• Use 5.06 (June 2016) for comparison

11/18



Compilers: ARM Compiler

• Commercial, closed-source until 5.x
• Based on LLVM/Clang since 6.0 (2014)

• Use 5.06 (June 2016) for comparison

11/18



Compilers: ARM Compiler

• Commercial, closed-source until 5.x
• Based on LLVM/Clang since 6.0 (2014)
• Use 5.06 (June 2016) for comparison

11/18



Case study: AES on Cortex-M3/M4

• 16 32-bit registers, 3 taken for pc, sp, (lr)

• Most arithmetic instructions 1 cycle
eor r2, r0, r1, ror #24

• Simple store to memory 1 cycle
• Loads from memory ≥ 2 cycles
• 3-stage pipeline
• n loads can be pipelined to take n + 1 cycles

12/18



Case study: AES on Cortex-M3/M4

• 16 32-bit registers, 3 taken for pc, sp, (lr)
• Most arithmetic instructions 1 cycle

eor r2, r0, r1, ror #24

• Simple store to memory 1 cycle
• Loads from memory ≥ 2 cycles
• 3-stage pipeline
• n loads can be pipelined to take n + 1 cycles

12/18



Case study: AES on Cortex-M3/M4

• 16 32-bit registers, 3 taken for pc, sp, (lr)
• Most arithmetic instructions 1 cycle

eor r2, r0, r1, ror #24
• Simple store to memory 1 cycle

• Loads from memory ≥ 2 cycles
• 3-stage pipeline
• n loads can be pipelined to take n + 1 cycles

12/18



Case study: AES on Cortex-M3/M4

• 16 32-bit registers, 3 taken for pc, sp, (lr)
• Most arithmetic instructions 1 cycle

eor r2, r0, r1, ror #24
• Simple store to memory 1 cycle
• Loads from memory ≥ 2 cycles

• 3-stage pipeline
• n loads can be pipelined to take n + 1 cycles

12/18



Case study: AES on Cortex-M3/M4

• 16 32-bit registers, 3 taken for pc, sp, (lr)
• Most arithmetic instructions 1 cycle

eor r2, r0, r1, ror #24
• Simple store to memory 1 cycle
• Loads from memory ≥ 2 cycles
• 3-stage pipeline

• n loads can be pipelined to take n + 1 cycles

12/18



Case study: AES on Cortex-M3/M4

• 16 32-bit registers, 3 taken for pc, sp, (lr)
• Most arithmetic instructions 1 cycle

eor r2, r0, r1, ror #24
• Simple store to memory 1 cycle
• Loads from memory ≥ 2 cycles
• 3-stage pipeline
• n loads can be pipelined to take n + 1 cycles

12/18



Case study: AES on Cortex-M3/M4

• Table-based, bitsliced, and masked bitsliced

• Bitsliced S-box 113 gates [BP10], in SSA

y14 = U3 + U5
y13 = U0 + U6
y9 = U0 + U3
y8 = U0 + U5
t0 = U1 + U2
y1 = t0 + U7
y4 = y1 + U3

y12 = y13 + y14
y2 = y1 + U0
y5 = y1 + U6
y3 = y5 + y8
t1 = U4 + y12

y15 = t1 + U5
y20 = t1 + U1
y6 = y15 + U7

y10 = y15 + t0

y11 = y20 + y9
y7 = U7 + y11

y17 = y10 + y11
y19 = y10 + y8
y16 = t0 + y11
y21 = y13 + y16
y18 = U0 + y16
t2 = y12 x y15
t3 = y3 x y6
t4 = t3 + t2
t5 = y4 x U7
t6 = t5 + t2
t7 = y13 x y16
t8 = y5 x y1
t9 = t8 + t7

t10 = y2 x y7

t11 = t10 + t7
t12 = y9 x y11
t13 = y14 x y17
t14 = t13 + t12
t15 = y8 x y10
t16 = t15 + t12
t17 = t4 + y20
t18 = t6 + t16
t19 = t9 + t14
t20 = t11 + t16
t21 = t17 + t14
t22 = t18 + y19
t23 = t19 + y21
t24 = t20 + y18
t25 = t21 + t22
(...)

13/18



Case study: AES on Cortex-M3/M4

• Table-based, bitsliced, and masked bitsliced
• Bitsliced S-box 113 gates [BP10], in SSA

y14 = U3 + U5
y13 = U0 + U6
y9 = U0 + U3
y8 = U0 + U5
t0 = U1 + U2
y1 = t0 + U7
y4 = y1 + U3

y12 = y13 + y14
y2 = y1 + U0
y5 = y1 + U6
y3 = y5 + y8
t1 = U4 + y12

y15 = t1 + U5
y20 = t1 + U1
y6 = y15 + U7

y10 = y15 + t0

y11 = y20 + y9
y7 = U7 + y11

y17 = y10 + y11
y19 = y10 + y8
y16 = t0 + y11
y21 = y13 + y16
y18 = U0 + y16
t2 = y12 x y15
t3 = y3 x y6
t4 = t3 + t2
t5 = y4 x U7
t6 = t5 + t2
t7 = y13 x y16
t8 = y5 x y1
t9 = t8 + t7

t10 = y2 x y7

t11 = t10 + t7
t12 = y9 x y11
t13 = y14 x y17
t14 = t13 + t12
t15 = y8 x y10
t16 = t15 + t12
t17 = t4 + y20
t18 = t6 + t16
t19 = t9 + t14
t20 = t11 + t16
t21 = t17 + t14
t22 = t18 + y19
t23 = t19 + y21
t24 = t20 + y18
t25 = t21 + t22
(...)

13/18



Case study: AES on Cortex-M3/M4

• Table-based, bitsliced, and masked bitsliced
• Bitsliced S-box 113 gates [BP10], in SSA

y14 = U3 + U5
y13 = U0 + U6
y9 = U0 + U3
y8 = U0 + U5
t0 = U1 + U2
y1 = t0 + U7
y4 = y1 + U3

y12 = y13 + y14
y2 = y1 + U0
y5 = y1 + U6
y3 = y5 + y8
t1 = U4 + y12

y15 = t1 + U5
y20 = t1 + U1
y6 = y15 + U7

y10 = y15 + t0

y11 = y20 + y9
y7 = U7 + y11

y17 = y10 + y11
y19 = y10 + y8
y16 = t0 + y11
y21 = y13 + y16
y18 = U0 + y16
t2 = y12 x y15
t3 = y3 x y6
t4 = t3 + t2
t5 = y4 x U7
t6 = t5 + t2
t7 = y13 x y16
t8 = y5 x y1
t9 = t8 + t7

t10 = y2 x y7

t11 = t10 + t7
t12 = y9 x y11
t13 = y14 x y17
t14 = t13 + t12
t15 = y8 x y10
t16 = t15 + t12
t17 = t4 + y20
t18 = t6 + t16
t19 = t9 + t14
t20 = t11 + t16
t21 = t17 + t14
t22 = t18 + y19
t23 = t19 + y21
t24 = t20 + y18
t25 = t21 + t22
(...)

13/18



Case study: AES on Cortex-M3/M4

• Table-based, bitsliced, and masked bitsliced
• Bitsliced S-box 113 gates [BP10], in SSA

y14 = U3 + U5
y13 = U0 + U6
y9 = U0 + U3
y8 = U0 + U5
t0 = U1 + U2
y1 = t0 + U7
y4 = y1 + U3

y12 = y13 + y14
y2 = y1 + U0
y5 = y1 + U6
y3 = y5 + y8
t1 = U4 + y12

y15 = t1 + U5
y20 = t1 + U1
y6 = y15 + U7

y10 = y15 + t0

y11 = y20 + y9
y7 = U7 + y11

y17 = y10 + y11
y19 = y10 + y8
y16 = t0 + y11
y21 = y13 + y16
y18 = U0 + y16
t2 = y12 x y15
t3 = y3 x y6
t4 = t3 + t2
t5 = y4 x U7
t6 = t5 + t2
t7 = y13 x y16
t8 = y5 x y1
t9 = t8 + t7

t10 = y2 x y7

t11 = t10 + t7
t12 = y9 x y11
t13 = y14 x y17
t14 = t13 + t12
t15 = y8 x y10
t16 = t15 + t12
t17 = t4 + y20
t18 = t6 + t16
t19 = t9 + t14
t20 = t11 + t16
t21 = t17 + t14
t22 = t18 + y19
t23 = t19 + y21
t24 = t20 + y18
t25 = t21 + t22
(...)

13/18



Why compilers are not ideal

• Compilers aim to produce fast binaries on average

• Compilers aim to run reasonably fast on large code bases
• Compilers only do one attempt
• Compilers are complicated
• (Also, qhasm, but requires manual spill code generation)

14/18



Why compilers are not ideal

• Compilers aim to produce fast binaries on average
• Compilers aim to run reasonably fast on large code bases

• Compilers only do one attempt
• Compilers are complicated
• (Also, qhasm, but requires manual spill code generation)

14/18



Why compilers are not ideal

• Compilers aim to produce fast binaries on average
• Compilers aim to run reasonably fast on large code bases
• Compilers only do one attempt

• Compilers are complicated
• (Also, qhasm, but requires manual spill code generation)

14/18



Why compilers are not ideal

• Compilers aim to produce fast binaries on average
• Compilers aim to run reasonably fast on large code bases
• Compilers only do one attempt
• Compilers are complicated

• (Also, qhasm, but requires manual spill code generation)

14/18



Why compilers are not ideal

• Compilers aim to produce fast binaries on average
• Compilers aim to run reasonably fast on large code bases
• Compilers only do one attempt
• Compilers are complicated
• (Also, qhasm, but requires manual spill code generation)

14/18



Our scheduler and register allocator

• Focus only on ARM’s three-operand instructions

• Multiple strategies implemented, designed to ‘play round’
• Nondeterministic due to hash randomization
• First reschedule, decrease the length of live ranges

– Push down based on left-hand side
– Push up based on right-hand side

• Then allocate greedily, keep output in registers
• If registers are full

– Free register with expired variable
– Otherwise, free register with longest distance until reuse

• Detect direct recomputation, can be cheaper than loading from
memory

• Source code in public domain:
https://github.com/Ko-/aes-armcortexm

15/18

https://github.com/Ko-/aes-armcortexm


Our scheduler and register allocator

• Focus only on ARM’s three-operand instructions
• Multiple strategies implemented, designed to ‘play round’

• Nondeterministic due to hash randomization
• First reschedule, decrease the length of live ranges

– Push down based on left-hand side
– Push up based on right-hand side

• Then allocate greedily, keep output in registers
• If registers are full

– Free register with expired variable
– Otherwise, free register with longest distance until reuse

• Detect direct recomputation, can be cheaper than loading from
memory

• Source code in public domain:
https://github.com/Ko-/aes-armcortexm

15/18

https://github.com/Ko-/aes-armcortexm


Our scheduler and register allocator

• Focus only on ARM’s three-operand instructions
• Multiple strategies implemented, designed to ‘play round’
• Nondeterministic due to hash randomization

• First reschedule, decrease the length of live ranges
– Push down based on left-hand side
– Push up based on right-hand side

• Then allocate greedily, keep output in registers
• If registers are full

– Free register with expired variable
– Otherwise, free register with longest distance until reuse

• Detect direct recomputation, can be cheaper than loading from
memory

• Source code in public domain:
https://github.com/Ko-/aes-armcortexm

15/18

https://github.com/Ko-/aes-armcortexm


Our scheduler and register allocator

• Focus only on ARM’s three-operand instructions
• Multiple strategies implemented, designed to ‘play round’
• Nondeterministic due to hash randomization
• First reschedule, decrease the length of live ranges

– Push down based on left-hand side
– Push up based on right-hand side

• Then allocate greedily, keep output in registers
• If registers are full

– Free register with expired variable
– Otherwise, free register with longest distance until reuse

• Detect direct recomputation, can be cheaper than loading from
memory

• Source code in public domain:
https://github.com/Ko-/aes-armcortexm

15/18

https://github.com/Ko-/aes-armcortexm


Our scheduler and register allocator

• Focus only on ARM’s three-operand instructions
• Multiple strategies implemented, designed to ‘play round’
• Nondeterministic due to hash randomization
• First reschedule, decrease the length of live ranges

– Push down based on left-hand side
– Push up based on right-hand side

• Then allocate greedily, keep output in registers

• If registers are full
– Free register with expired variable
– Otherwise, free register with longest distance until reuse

• Detect direct recomputation, can be cheaper than loading from
memory

• Source code in public domain:
https://github.com/Ko-/aes-armcortexm

15/18

https://github.com/Ko-/aes-armcortexm


Our scheduler and register allocator

• Focus only on ARM’s three-operand instructions
• Multiple strategies implemented, designed to ‘play round’
• Nondeterministic due to hash randomization
• First reschedule, decrease the length of live ranges

– Push down based on left-hand side
– Push up based on right-hand side

• Then allocate greedily, keep output in registers
• If registers are full

– Free register with expired variable
– Otherwise, free register with longest distance until reuse

• Detect direct recomputation, can be cheaper than loading from
memory

• Source code in public domain:
https://github.com/Ko-/aes-armcortexm

15/18

https://github.com/Ko-/aes-armcortexm


Our scheduler and register allocator

• Focus only on ARM’s three-operand instructions
• Multiple strategies implemented, designed to ‘play round’
• Nondeterministic due to hash randomization
• First reschedule, decrease the length of live ranges

– Push down based on left-hand side
– Push up based on right-hand side

• Then allocate greedily, keep output in registers
• If registers are full

– Free register with expired variable
– Otherwise, free register with longest distance until reuse

• Detect direct recomputation, can be cheaper than loading from
memory

• Source code in public domain:
https://github.com/Ko-/aes-armcortexm

15/18

https://github.com/Ko-/aes-armcortexm


Our scheduler and register allocator

• Focus only on ARM’s three-operand instructions
• Multiple strategies implemented, designed to ‘play round’
• Nondeterministic due to hash randomization
• First reschedule, decrease the length of live ranges

– Push down based on left-hand side
– Push up based on right-hand side

• Then allocate greedily, keep output in registers
• If registers are full

– Free register with expired variable
– Otherwise, free register with longest distance until reuse

• Detect direct recomputation, can be cheaper than loading from
memory

• Source code in public domain:
https://github.com/Ko-/aes-armcortexm

15/18

https://github.com/Ko-/aes-armcortexm


Results

• Used in fastest AES implementations for Cortex-M3/M4 [SS16]

• Results for 113-instruction S-box
Compilers GCC Clang ARM Compiler Our tool
Loads 46 32 50 16
Stores 27 27 32 16

• Most recent compiler versions, ‘best’ flags
• Other compilers also insert arithmetic and move instructions
• Results for 454-instruction masked S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 330 185 332 135
Stores 126 145 132 99

• (Excluding 32 loads for randomness)

16/18



Results

• Used in fastest AES implementations for Cortex-M3/M4 [SS16]
• Results for 113-instruction S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 46 32 50 16
Stores 27 27 32 16

• Most recent compiler versions, ‘best’ flags
• Other compilers also insert arithmetic and move instructions
• Results for 454-instruction masked S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 330 185 332 135
Stores 126 145 132 99

• (Excluding 32 loads for randomness)

16/18



Results

• Used in fastest AES implementations for Cortex-M3/M4 [SS16]
• Results for 113-instruction S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 46 32 50 16
Stores 27 27 32 16

• Most recent compiler versions, ‘best’ flags

• Other compilers also insert arithmetic and move instructions
• Results for 454-instruction masked S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 330 185 332 135
Stores 126 145 132 99

• (Excluding 32 loads for randomness)

16/18



Results

• Used in fastest AES implementations for Cortex-M3/M4 [SS16]
• Results for 113-instruction S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 46 32 50 16
Stores 27 27 32 16

• Most recent compiler versions, ‘best’ flags
• Other compilers also insert arithmetic and move instructions

• Results for 454-instruction masked S-box
Compilers GCC Clang ARM Compiler Our tool
Loads 330 185 332 135
Stores 126 145 132 99

• (Excluding 32 loads for randomness)

16/18



Results

• Used in fastest AES implementations for Cortex-M3/M4 [SS16]
• Results for 113-instruction S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 46 32 50 16
Stores 27 27 32 16

• Most recent compiler versions, ‘best’ flags
• Other compilers also insert arithmetic and move instructions
• Results for 454-instruction masked S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 330 185 332 135
Stores 126 145 132 99

• (Excluding 32 loads for randomness)

16/18



Results

• Used in fastest AES implementations for Cortex-M3/M4 [SS16]
• Results for 113-instruction S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 46 32 50 16
Stores 27 27 32 16

• Most recent compiler versions, ‘best’ flags
• Other compilers also insert arithmetic and move instructions
• Results for 454-instruction masked S-box

Compilers GCC Clang ARM Compiler Our tool
Loads 330 185 332 135
Stores 126 145 132 99

• (Excluding 32 loads for randomness)

16/18



Results

Algorithm Speed (cycles) ROM (bytes) RAM (bytes)
M3 M4 Code Data I/O Stack

AES-128-CTR 546.3 554.4 2192 1024 192
+2m

72

Bitsliced
AES-128-CTR

1616.6 1617.6 12120 12 368
+2m

108

Masked bitsliced
AES-128-CTR

N/A 7422.6 39916 12 368
+2m

1588

AES-128 KS 289.8 294.8 902 1024 176 32
Bitsliced
AES-128 KS

1027.8 1033.8 3434 1036 368 188

Masked bitsliced
AES-128 KS

1027.8 1033.8 3434 1036 368 188

More on full AES in [SS16]

17/18



Thanks. . .

. . . for your attention!

Paper and code at
https://ko.stoffelen.nl/

18/18

https://ko.stoffelen.nl/


References I

Joan Boyar and René Peralta.
A new combinational logic minimization technique with applications to cryptology.
In Paola Festa, editor, Experimental Algorithms, volume 6049 of LNCS, pages 178–189.
Springer, 2010.
http://eprint.iacr.org/2009/191/.

Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein.
Register allocation via coloring.
Computer Languages, 6(1):47 – 57, 1981.

G. J. Chaitin.
Register allocation & spilling via graph coloring.
In Proceedings of the 1982 SIGPLAN Symposium on Compiler Construction, SIGPLAN
’82, pages 98–105. ACM, 1982.

Massimiliano Poletto and Vivek Sarkar.
Linear scan register allocation.
ACM Trans. Program. Lang. Syst., 21(5):895–913, September 1999.

19/18

http://eprint.iacr.org/2009/191/


References II

Peter Schwabe and Ko Stoffelen.
All the AES you need on Cortex-M3 and M4.
In Selected Areas in Cryptography – SAC 2016, LNCS. Springer, 2016.
https://eprint.iacr.org/2016/714/.

20/18

https://eprint.iacr.org/2016/714/

