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Diffusion in AES
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Diffusion in AES


b0

b1

b2

b3

 =


02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02




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a1

a2

a3
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MDS matrices

• Coding theory has maximum distance separable (MDS) codes

• “Reaches Singleton bound”
• Given [n, k, d ] code over Fq, best error correction when d = n− k + 1
• For example, Reed-Solomon codes (DVD, Blu-ray)
• Use this idea for diffusion in crypto!
• An m × n matrix A over Fq is MDS when the set{

(x1, . . . , xn, (Ax)1, . . . , (Ax)m)|x ∈ Fn
q
}
forms an MDS code

• MixColumns matrix is MDS
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Lightweight MDS matrices
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Lightweight MDS matrices

• Cauchy and Vandermonde matrices are MDS, but don’t exist for all
parameters

• Add structure to reduce search space (Hadamard, circulant, Toeplitz,
subfield)

• Have to test for MDS-ness, but the probability is higher than for a
random matrix

• XOR count of a: number of XORs to multiply a with an arbitrary b,
a, b ∈ F2k

• Assumes ’summation’ has constant cost, local optimization
• Core idea: an n × n matrix over F2k can be viewed as nk × nk matrix

over F2, do global optimization
• Solving the shortest linear straight-line program (SLP) problem yields

the optimal number of XORs
• Well-studied problem, known algorithms give better results
• Remove common subexpressions, allow cancellation
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SLP example


1 1 0 0

1 1 1 0

1 1 1 1

0 1 1 1




x0

x1

x2

x3

⇒


x0 ⊕ x1

x0 ⊕ x1 ⊕ x2

x0 ⊕ x1 ⊕ x2 ⊕ x3

x1 ⊕ x2 ⊕ x3



v0 := x0 ⊕ x1
v1 := v0 ⊕ x2
v2 := v1 ⊕ x3
v3 := v2 ⊕ x0
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Alternative mixing layers

• Good diffusion over a few rounds is more important

• MDS requirement can be dropped when there are good bounds on
trails (attacks)

• PRIDE uses a near-MDS matrix, with a few more zeroes
• Keccak-f uses a column parity mixer (CPM)
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Column parity mixers

For an m × n matrix A:

θ(A) = A +

1m

f (A)

Z

θ fully defined by m and Z

Some algebraic properties:

• If m even, CPMs are involutions (as (1m
m)2 = 0), commutative,

∼= (Zn2

2 ,+)
• If m odd, CPMs invertible iff Z + I is invertible, non-commutative,
∼= GL(n, 2) if Z + I non-singular
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Differential cryptanalysis in a nutshell

• If Pr[∆0, . . . ,∆r ] is high,
cipher is not random

• Leads to key recovery!
• Many variants exist

t0
⊕

t ′0 = ∆0

t1
⊕

t ′1 = ∆1

t2
⊕

t ′2 = ∆2

f f

f f
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Diffusion with a CPM

• Goal: no low-weight differential trail

• How about a state like this?

• CPM-kernel issues can be avoided by some transposition
(ShiftRows-like)

• How about this one?
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How to build a permutation with a CPM

1. Determine design goals

2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z )
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good’ round constants to beat all kinds of invariant attacks
9. Do more analysis

10. Determine the number of rounds
11. Implement it
12. Give it a name
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Mixifer

• 16 rounds (ι ◦ ρ ◦ π ◦ θ ◦ γ), 4× 16× 4 = 256 bits permutation

• γ: rotational symmetric, b0 = a1 + a2 + a0a2 + a1a2 + a1a2a3
• θ: Z is circulant, first row [0, 1, 1, 0, 0, 1, 0, 0, 0, . . . , 0]
• π: rotate rows down
• ρ: rotate rows cell-wise to the right by {14, 3, 10, 0}
• ι: add 0xF3485763� i in round i to even cells of top row
• SAC after 3 rounds, full diffusion after 5
• In the kernel: ≥ 52 active cells after 4 rounds
• Outside the kernel: ≥ 46 active cells after 4 rounds (differential), DP

2−92

• Outside the kernel: ≥ 40 active cells after 4 rounds (linear), LP 2−80

• 36.69 cyc/byte on ARM Cortex-M3/M4
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Thanks. . .

. . . for your attention
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