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Diffusion in AES
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MDS matrices

Coding theory has maximum distance separable (MDS) codes
“Reaches Singleton bound”

Given [n, k, d] code over g, best error correction when d = n—k+1
For example, Reed-Solomon codes (DVD, Blu-ray)

Use this idea for diffusion in crypto!

An m x n matrix A over Fq is MDS when the set

{(x1,- - Xn, (AX)1, ..., (AX)m)|x € Fp} forms an MDS code

e MixColumns matrix is MDS
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Lightweight MDS matrices
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e Have to test for MDS-ness, but the probability is higher than for a
random matrix

e XOR count of a: number of XORs to multiply a with an arbitrary b,
a,b e Fu

e Assumes 'summation’ has constant cost, local optimization

e Core idea: an n x n matrix over Fox can be viewed as nk X nk matrix
over [Fy, do global optimization

e Solving the shortest linear straight-line program (SLP) problem yields
the optimal number of XORs

o  Well-studied problem, known algorithms give better results

e Remove common subexpressions, allow cancellation
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SLP example

1 1 0 O X0 X0 D X1
1 110 X1 Xg D x1 D xo
=
1 1 1 1| |x Xo D x1 D X2 D X3
01 1 1 X3 X1 D X0 D X3
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01 1 1 X3 X1 D X0 D X3
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Alternative mixing layers

e Good diffusion over a few rounds is more important

e MDS requirement can be dropped when there are good bounds on
trails (attacks)

e PRIDE uses a near-MDS matrix, with a few more zeroes

e KECCAK-f uses a column parity mixer (CPM)

l column parity
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Column parity mixers

For an m x n matrix A:
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Column parity mixers

For an m x n matrix A:

0(A)=A+ 1nAZ
0 fully defined by m and Z

Some algebraic properties:

e If meven, CPMs are involutions (as (17)% = 0), commutative,
~ n2
= (Z2 a+)

e |If modd, CPMs invertible iff Z 4 | is invertible, non-commutative,
>~ GL(n,2) if Z+ | non-singular
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Differential cryptanalysis in a nutshell

to @ t/ = A()
o IfPr[A,..., ] is high, 0
cipher is not random * *
f f

ty ) ty =N
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Differential cryptanalysis in a nutshell

to @ t = A()
If Pr[Ao, ..., A,] is high, 0
cipher is not random * *
Leads to key recovery!
Many variants exist f f
ty ) ty =N
f f
t ) t) =A;
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Diffusion with a CPM

Goal: no low-weight differential trail
How about a state like this?

o CPM-kernel issues can be avoided by some transposition
(ShiftRows-like)
How about this one?
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How to build a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick ‘good’ ‘efficient’ non-linear S-box
4. Consider (truncated) trails in the kernel (independent of 2)
5. Determine ‘good’ transposition
6. Consider (truncated) trails outside the kernel
7. Determine ‘good’ Z
8. Pick ‘good' round constants to beat all kinds of invariant attacks
9. Do more analysis
10. Determine the number of rounds
11. Implement it
12. Give it a name
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e ~: rotational symmetric, by = a1 + a» + agax + a1ar + arar a3

e 0: Zis circulant, first row [0,1,1,0,0,1,0,0,0,...,0]

e 7 rotate rows down

e p: rotate rows cell-wise to the right by {14, 3,10,0}

e 1 add 0xF3485763 > i in round i to even cells of top row

e SAC after 3 rounds, full diffusion after 5

e In the kernel: > 52 active cells after 4 rounds
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Mixifer

e 16 rounds (topomofory), 4 x 16 x 4 =256 bits permutation

e ~: rotational symmetric, by = a1 + a» + agax + a1ar + arar a3

e 0: Zis circulant, first row [0,1,1,0,0,1,0,0,0,...,0]

e 7. rotate rows down

e p: rotate rows cell-wise to the right by {14, 3,10,0}

e 1 add 0xF3485763 > i in round i to even cells of top row

e SAC after 3 rounds, full diffusion after 5

e In the kernel: > 52 active cells after 4 rounds

e Outside the kernel: > 46 active cells after 4 rounds (differential), DP
2—92
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Mixifer

16 rounds (topomofo~y), 4 x 16 x 4 = 256 bits permutation

~: rotational symmetric, by = a; + a» + agas + a1ax + aiaqas

0: Z is circulant, first row [0,1,1,0,0,1,0,0,0,...,0]

m: rotate rows down

p: rotate rows cell-wise to the right by {14, 3,10, 0}

¢t add 0xF3485763 > i in round i to even cells of top row

SAC after 3 rounds, full diffusion after 5

In the kernel: > 52 active cells after 4 rounds

Outside the kernel: > 46 active cells after 4 rounds (differential), DP
2—92

Outside the kernel: > 40 active cells after 4 rounds (linear), LP 278
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Mixifer

e 16 rounds (topomofory), 4 x 16 x 4 =256 bits permutation

e ~: rotational symmetric, by = a1 + a» + agax + a1ar + arar a3

e 0: Zis circulant, first row [0,1,1,0,0,1,0,0,0,...,0]

e 7. rotate rows down

e p: rotate rows cell-wise to the right by {14, 3,10,0}

e 1 add 0xF3485763 > i in round i to even cells of top row

e SAC after 3 rounds, full diffusion after 5

e In the kernel: > 52 active cells after 4 rounds

e Outside the kernel: > 46 active cells after 4 rounds (differential), DP
2—92

e Outside the kernel: > 40 active cells after 4 rounds (linear), LP 2780

e 36.69 cyc/byte on ARM Cortex-M3/M4
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Thanks. ..

... for your attention
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