Column Parity Mixers

Ko Stoffelen and Joan Daemen

Diffusion

Diffusion in Keccak- f

\downarrow column parity
$\uparrow \theta^{\prime}$ effect

Only 2 XORs/bit + good bounds on differential trails [MDA17]

Column parity mixers

For an $m \times n$ matrix A over \mathbb{F}_{2}^{ℓ} :

$$
\begin{array}{r}
\theta(A)=A+ \\
\left(\begin{array}{llll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right)
\end{array}
$$

Column parity mixers

For an $m \times n$ matrix A over \mathbb{F}_{2}^{ℓ} :

$$
\begin{array}{r}
\theta(A)=A+\quad \mathbf{1}_{m}^{\top} A \\
\underbrace{\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{llll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right)}_{1 \times n \text { column parity }}
\end{array}
$$

Column parity mixers

For an $m \times n$ matrix A over \mathbb{F}_{2}^{ℓ} :

$$
\begin{gathered}
\theta(A)=A+\quad \mathbf{1}_{m}^{\top} A Z \\
\underbrace{\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)\left(\begin{array}{llll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right)}_{1 \times n} \underbrace{\left(\begin{array}{llll}
z_{0,0} & z_{0,1} & z_{0,2} & z_{0,3} \\
z_{1,0} & z_{1,1} & z_{1,2} & z_{1,3} \\
z_{2,0} & z_{2,1} & z_{2,2} & z_{2,3} \\
z_{3,0} & z_{3,1} & z_{3,2} & z_{3,3}
\end{array}\right)}_{1 \times n \text { column parity }}
\end{gathered}
$$

Column parity mixers

For an $m \times n$ matrix A over \mathbb{F}_{2}^{ℓ} :

$$
\theta(A)=A+\mathbf{1}_{m} \mathbf{1}_{m}^{\top} A Z
$$

$1 \times n \theta$-effect
$m \times n$ expanded θ-effect

Column parity mixers

For an $m \times n$ matrix A over \mathbb{F}_{2}^{ℓ} :

$$
\begin{gathered}
\theta(A)=A+\mathbf{1}_{m}^{m} A Z \\
\underbrace{1} \begin{array}{l}
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \underbrace{\left(\begin{array}{llll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right)}_{1 \times n \text { column parity }} \underbrace{\left(\begin{array}{llll}
z_{0,0} & z_{0,1} & z_{0,2} & z_{0,3} \\
z_{1,0} & z_{1,1} & z_{1,2} & z_{1,3} \\
z_{2,0} & z_{2,1} & z_{2,2} & z_{2,3} \\
z_{3,0} & z_{3,1} & z_{3,2} & z_{3,3}
\end{array}\right)}_{m \times n \text { expanded } \theta \text {-effect }}
\end{array} \underbrace{(\underbrace{}_{n \times n}}_{n \times n \text { parity-folding matrix }}
\end{gathered}
$$

Column parity mixers

For an $m \times n$ matrix A over \mathbb{F}_{2}^{ℓ} :

$$
\begin{gathered}
\theta(A)=A+\mathbf{1}_{m}^{m} A Z \\
\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right) \underbrace{\underbrace{}_{n \times n \text { parity-folding matrix }}}_{\underbrace{\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \underbrace{\left.\begin{array}{llll}
a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\
a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\
a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3}
\end{array}\right)}_{1 \times n \text { column parity }} \underbrace{\left(\begin{array}{llll}
z_{0,0} & z_{0,1} & z_{0,2} & z_{0,3} \\
z_{1,0} & z_{1,1} & z_{1,2} & z_{1,3} \\
z_{2,0} & z_{2,1} & z_{2,2} & z_{2,3} \\
z_{3,0} & z_{3,1} & z_{3,2} & z_{3,3}
\end{array}\right)}_{1 \times n \theta \text {-effect }}}_{m \times n \text { expanded } \theta \text {-effect }}}
\end{gathered}
$$

θ fully defined by m, n and Z

Special case: circulant Z

$$
\left(\begin{array}{llll}
z_{0} & z_{1} & z_{2} & z_{3} \\
z_{1} & z_{2} & z_{3} & z_{0} \\
z_{2} & z_{3} & z_{0} & z_{1} \\
z_{3} & z_{0} & z_{1} & z_{2}
\end{array}\right)
$$

Special case: circulant Z

$$
\begin{aligned}
& \left(\begin{array}{cccc}
z_{0} & z_{1} & z_{2} & z_{3} \\
z_{1} & z_{2} & z_{3} & z_{0} \\
z_{2} & z_{3} & z_{0} & z_{1} \\
z_{3} & z_{0} & z_{1} & z_{2}
\end{array}\right) \\
& z(x)=z_{0}+z_{1} x+z_{2} x^{2}+z_{3} x^{3}
\end{aligned}
$$

Special case: circulant Z

$$
\begin{aligned}
& \left(\begin{array}{cccc}
z_{0} & z_{1} & z_{2} & z_{3} \\
z_{1} & z_{2} & z_{3} & z_{0} \\
z_{2} & z_{3} & z_{0} & z_{1} \\
z_{3} & z_{0} & z_{1} & z_{2}
\end{array}\right) \\
& z(x)=z_{0}+z_{1} x+z_{2} x^{2}+z_{3} x^{3}
\end{aligned}
$$

θ-effect: $z(x) p(x) \bmod 1+x^{n}$

Special case: circulant Z

$$
\begin{gathered}
\left(\begin{array}{cccc}
z_{0} & z_{1} & z_{2} & z_{3} \\
z_{1} & z_{2} & z_{3} & z_{0} \\
z_{2} & z_{3} & z_{0} & z_{1} \\
z_{3} & z_{0} & z_{1} & z_{2}
\end{array}\right) \\
z(x)=z_{0}+z_{1} x+z_{2} x^{2}+z_{3} x^{3} \\
\theta \text {-effect: } z(x) p(x) \bmod 1+x^{n} \\
\theta(a(x, y))=a(x, y)+\frac{1+y^{m}}{1+y} z(x) a(x, y) \bmod \left(1+x^{n}\right)\left(1+y^{m}\right)
\end{gathered}
$$

Algebraic properties

$$
\begin{aligned}
\theta^{\prime}(\theta(A)) & =\theta^{\prime}\left(A+\mathbf{1}_{m}^{m} A Z\right) \\
& =A+\mathbf{1}_{m}^{m} A Z+\mathbf{1}_{m}^{m} A Z^{\prime}+\left(\mathbf{1}_{m}^{m}\right)^{2} A Z Z^{\prime}
\end{aligned}
$$

Algebraic properties

$$
\begin{aligned}
\theta^{\prime}(\theta(A)) & =\theta^{\prime}\left(A+\mathbf{1}_{m}^{m} A Z\right) \\
& =A+\mathbf{1}_{m}^{m} A Z+\mathbf{1}_{m}^{m} A Z^{\prime}+\left(\mathbf{1}_{m}^{m}\right)^{2} A Z Z^{\prime}
\end{aligned}
$$

- If m even, $\left(\mathbf{1}_{m}^{m}\right)^{2}=\mathbf{0}_{m}^{m}$:
- $\quad \theta^{\prime}(\theta(A))=A+\mathbf{1}_{m}^{m} A\left(Z+Z^{\prime}\right)$
- Group isomorphic to $\left(\mathbb{Z}_{2}^{n^{2}},+\right)$
- CPM is invertible, involution, commutative

Algebraic properties

$$
\begin{aligned}
\theta^{\prime}(\theta(A)) & =\theta^{\prime}\left(A+\mathbf{1}_{m}^{m} A Z\right) \\
& =A+\mathbf{1}_{m}^{m} A Z+\mathbf{1}_{m}^{m} A Z^{\prime}+\left(\mathbf{1}_{m}^{m}\right)^{2} A Z Z^{\prime}
\end{aligned}
$$

- If m even, $\left(\mathbf{1}_{m}^{m}\right)^{2}=\mathbf{0}_{m}^{m}$:
- $\quad \theta^{\prime}(\theta(A))=A+\mathbf{1}_{m}^{m} A\left(Z+Z^{\prime}\right)$
- Group isomorphic to $\left(\mathbb{Z}_{2}^{n^{2}},+\right)$
- CPM is invertible, involution, commutative
- If m odd, $\left(\mathbf{1}_{m}^{m}\right)^{2}=\mathbf{1}_{m}^{m}$:
- $\quad \theta^{\prime}(\theta(A))=A+\mathbf{1}_{m}^{m} A\left((Z+\mathbf{I})\left(Z^{\prime}+\mathbf{I}\right)+\mathbf{I}\right)$
- Group isomorphic to $G L(n, 2)$
- CPM is invertible iff $Z+\mathbf{I}$ is, non-commutative

Propagation properties

- Differences

$$
\begin{aligned}
& A_{\Delta}=A+A^{\prime} \text { at the input } \\
& \Rightarrow B_{\Delta}=\theta(A)+\theta\left(A^{\prime}\right)=\theta\left(A_{\Delta}\right) \text { at the output }
\end{aligned}
$$

Propagation properties

- Differences
$A_{\Delta}=A+A^{\prime}$ at the input
$\Rightarrow B_{\Delta}=\theta(A)+\theta\left(A^{\prime}\right)=\theta\left(A_{\Delta}\right)$ at the output
- Linear masks
V at the output
$\Rightarrow U=V+\mathbf{1}_{m}^{m} V Z^{\top}$ at the input

Diffusion with CPMs

- How about a state like this?

Diffusion with CPMs

- How about a state like this?

- Orbital: pair of active bits in the same column

Diffusion with CPMs

- How about a state like this?

- Orbital: pair of active bits in the same column
- θ is identity for states in the kernel

Diffusion with CPMs

- How about a state like this?

- Orbital: pair of active bits in the same column
- θ is identity for states in the kernel
- States in the kernel can be expressed as a set of orbitals

Diffusion with CPMs

- How about a state like this?

- Orbital: pair of active bits in the same column
- θ is identity for states in the kernel
- States in the kernel can be expressed as a set of orbitals
- Branch number 4

Diffusion with CPMs

- How about a state like this?

- Orbital: pair of active bits in the same column
- θ is identity for states in the kernel
- States in the kernel can be expressed as a set of orbitals
- Branch number 4
- Requires transposition layer

Diffusion with CPMs

- How about a state like this?

- Orbital: pair of active bits in the same column
- θ is identity for states in the kernel
- States in the kernel can be expressed as a set of orbitals
- Branch number 4
- Requires transposition layer
- \quad Single-bit difference propagates to $1+|Z| m$ bits

CPMs vs. (near-)MDS matrices

Cipher	Type	XORs/bit	Branch no.
AES	MDS	3.03	5
Joltik	MDS	3	5
PHOTON	MDS	5^{\dagger}	7
Prøst	MDS	4.5^{\dagger}	5
Midori	Not MDS	1.5	4
Minalpher	Not MDS \ddagger	1.5	4
Prince	Not MDS	1.5	4
SKINNY	Not MDS	0.75	2
Keccak-f	CPM	2	4
Circulant CPM	CPM	$2+\frac{\|z(x)\|-2 *}{m}$	4

${ }^{*}$ XORs/bit $\in[2-1 / m, 2+(n-2) / m]$
\dagger Unknown whether it can be computed with less XORs
\ddagger Can also be considered to be a CPM!

CPM example

$$
\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right)
$$

CPM example

$$
\begin{gathered}
\left(\begin{array}{cccc}
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0 \\
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1
\end{array}\right) \\
\Leftrightarrow \\
m=2, Z=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
\end{gathered}
$$

Building a permutation with a CPM

1. Determine design goals

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good’ 'efficient' non-linear S-box

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good' 'efficient' non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good' 'efficient' non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine 'good' transposition

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good' 'efficient' non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine 'good' transposition
6. Consider (truncated) trails outside the kernel

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good' 'efficient' non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine 'good' transposition
6. Consider (truncated) trails outside the kernel
7. Determine 'good' Z

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good' 'efficient' non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine 'good' transposition
6. Consider (truncated) trails outside the kernel
7. Determine 'good' Z
8. Pick 'good' round constants to beat all kinds of invariant attacks [BCLR17]

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good’ 'efficient' non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine 'good' transposition
6. Consider (truncated) trails outside the kernel
7. Determine 'good' Z
8. Pick 'good' round constants to beat all kinds of invariant attacks [BCLR17]
9. Do more analysis

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good' 'efficient' non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine 'good' transposition
6. Consider (truncated) trails outside the kernel
7. Determine 'good' Z
8. Pick 'good' round constants to beat all kinds of invariant attacks [BCLR17]
9. Do more analysis
10. Determine the number of rounds

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good’ 'efficient' non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine 'good' transposition
6. Consider (truncated) trails outside the kernel
7. Determine 'good' Z
8. Pick 'good' round constants to beat all kinds of invariant attacks [BCLR17]
9. Do more analysis
10. Determine the number of rounds
11. Implement it

Building a permutation with a CPM

1. Determine design goals
2. Pick m, n, and cell width
3. Pick 'good' 'efficient' non-linear S-box
4. Consider (truncated) trails in the kernel (independent of Z)
5. Determine 'good' transposition
6. Consider (truncated) trails outside the kernel
7. Determine 'good' Z
8. Pick 'good' round constants to beat all kinds of invariant attacks [BCLR17]
9. Do more analysis
10. Determine the number of rounds
11. Implement it
12. Give it a name

(Truncated) trail search

- r-round trail with weight W has differential with weight $L \leq\left\lfloor\frac{W}{r}\right\rfloor$

(Truncated) trail search

- $\quad r$-round trail with weight W has differential with weight $L \leq\left\lfloor\frac{W}{r}\right\rfloor$
- Observation in [MDA17]: less 2-round trail cores with weight $\leq 2 L$ than differentials $\leq L$

(Truncated) trail search

- r-round trail with weight W has differential with weight $L \leq\left\lfloor\frac{W}{r}\right\rfloor$
- Observation in [MDA17]: less 2-round trail cores with weight $\leq 2 L$ than differentials $\leq L$
- Generate 2-round trail cores, extend $r-2$

(Truncated) trail search

- r-round trail with weight W has differential with weight $L \leq\left\lfloor\frac{W}{r}\right\rfloor$
- Observation in [MDA17]: less 2-round trail cores with weight $\leq 2 L$ than differentials $\leq L$
- Generate 2-round trail cores, extend $r-2$
- Model generation as tree traversal, following [MDA17]

(Truncated) trail search

- r-round trail with weight W has differential with weight $L \leq\left\lfloor\frac{W}{r}\right\rfloor$
- Observation in [MDA17]: less 2-round trail cores with weight $\leq 2 L$ than differentials $\leq L$
- Generate 2-round trail cores, extend $r-2$
- Model generation as tree traversal, following [MDA17]
- Use rotational symmetry and monotonically increasing weight for pruning

(Truncated) trail search

- r-round trail with weight W has differential with weight $L \leq\left\lfloor\frac{W}{r}\right\rfloor$
- Observation in [MDA17]: less 2-round trail cores with weight $\leq 2 L$ than differentials $\leq L$
- Generate 2-round trail cores, extend $r-2$
- Model generation as tree traversal, following [MDA17]
- Use rotational symmetry and monotonically increasing weight for pruning
- CPM causes heavy search space branching

(Truncated) trail search

- r-round trail with weight W has differential with weight $L \leq\left\lfloor\frac{W}{r}\right\rfloor$
- Observation in [MDA17]: less 2-round trail cores with weight $\leq 2 L$ than differentials $\leq L$
- Generate 2-round trail cores, extend $r-2$
- Model generation as tree traversal, following [MDA17]
- Use rotational symmetry and monotonically increasing weight for pruning
- CPM causes heavy search space branching
- Dedicated software for CPM-based ciphers/permutations

Mixifer

- 16 rounds $(\iota \circ \rho \circ \pi \circ \theta \circ \gamma), 4 \times 16 \times 4=256$ bits permutation

Mixifer

- 16 rounds ($\iota \circ \rho \circ \pi \circ \theta \circ \gamma$), $4 \times 16 \times 4=256$ bits permutation
- γ : rotational symmetric, $b_{0}=a_{1}+a_{2}+a_{0} a_{2}+a_{1} a_{2}+a_{1} a_{2} a_{3}$

Mixifer

- 16 rounds ($\iota \circ \rho \circ \pi \circ \theta \circ \gamma$), $4 \times 16 \times 4=256$ bits permutation
- γ : rotational symmetric, $b_{0}=a_{1}+a_{2}+a_{0} a_{2}+a_{1} a_{2}+a_{1} a_{2} a_{3}$
- $\theta: Z$ is circulant, first row $[0,1,1,0,0,1,0,0,0, \ldots, 0]$

Mixifer

- 16 rounds ($\iota \circ \rho \circ \pi \circ \theta \circ \gamma$), $4 \times 16 \times 4=256$ bits permutation
- γ : rotational symmetric, $b_{0}=a_{1}+a_{2}+a_{0} a_{2}+a_{1} a_{2}+a_{1} a_{2} a_{3}$
- $\theta: Z$ is circulant, first row $[0,1,1,0,0,1,0,0,0, \ldots, 0]$
- π : rotate rows down

Mixifer

- 16 rounds $(\iota \circ \rho \circ \pi \circ \theta \circ \gamma), 4 \times 16 \times 4=256$ bits permutation
- γ : rotational symmetric, $b_{0}=a_{1}+a_{2}+a_{0} a_{2}+a_{1} a_{2}+a_{1} a_{2} a_{3}$
- $\theta: Z$ is circulant, first row $[0,1,1,0,0,1,0,0,0, \ldots, 0]$
- π : rotate rows down
- $\quad \rho$: rotate rows cell-wise to the right by $\{14,3,10,0\}$

Mixifer

- 16 rounds ($\iota \circ \rho \circ \pi \circ \theta \circ \gamma$), $4 \times 16 \times 4=256$ bits permutation
- γ : rotational symmetric, $b_{0}=a_{1}+a_{2}+a_{0} a_{2}+a_{1} a_{2}+a_{1} a_{2} a_{3}$
- $\theta: Z$ is circulant, first row $[0,1,1,0,0,1,0,0,0, \ldots, 0]$
- π : rotate rows down
- ρ : rotate rows cell-wise to the right by $\{14,3,10,0\}$
- $\quad i$: add $0 \times \mathrm{xF} 3485763 \gg i$ in round i to every other cell of top row

Mixifer analysis

- Strict avalanche criterion after 3 rounds, full diffusion after 5

Mixifer analysis

- Strict avalanche criterion after 3 rounds, full diffusion after 5
- After 4 rounds:

Mixifer analysis

- Strict avalanche criterion after 3 rounds, full diffusion after 5
- After 4 rounds:
- In kernel: ≥ 52 active cells

Mixifer analysis

- Strict avalanche criterion after 3 rounds, full diffusion after 5
- After 4 rounds:
- In kernel: ≥ 52 active cells
- Outside kernel: ≥ 46 active cells (differential), DP 2^{-92}

Mixifer analysis

- Strict avalanche criterion after 3 rounds, full diffusion after 5
- After 4 rounds:
- In kernel: ≥ 52 active cells
- Outside kernel: ≥ 46 active cells (differential), DP 2^{-92}
- Outside kernel: ≥ 40 active cells (linear), LP 2^{-80}

Mixifer analysis

- Strict avalanche criterion after 3 rounds, full diffusion after 5
- After 4 rounds:
- In kernel: ≥ 52 active cells
- Outside kernel: ≥ 46 active cells (differential), DP 2^{-92}
- Outside kernel: ≥ 40 active cells (linear), LP 2^{-80}
- Preliminary study makes us believe trail clustering, impossible differentials, invariant attacks are not a concern

Mixifer implementation

Mixifer comparison (ARM Cortex-M4)

Cipher	Width	r	Speed (cpb)			Bound trails		
	(bits)		Full	$/ r$	r	W	$/ r$	
AES bitsliced	128	10	50.52	5.05	4	150	37.5	
AES tables			39.97	4.00				
Gimli	384	24	21.81	0.91	8	52	6.5	
Keccak- $f[400]$	400	20	106	5.3	6	92	15.3	
Keccak- $f[800]$	800	22	48.02	2.18	6	92	15.3	
Salsa20/20	512	20	13.88	0.69	3	18	6	
Mixifer	256	16	36.69	2.33	4	92	23	

Thanks...

... for your attention

Questions?

References I

宔
Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella.
Proving resistance against invariant attacks: How to choose the round constants.
In Jonathan Katz and Hovav Shacham, editors, Advances in Cryptology - CRYPTO 2017, Part II, volume 10402 of Lecture Notes in Computer Science, pages 647-678, Santa Barbara, CA, USA, August 20-24, 2017. Springer, Heidelberg, Germany.

Silvia Mella, Joan Daemen, and Gilles Van Assche.
New techniques for trail bounds and application to differential trails in Keccak. IACR Transactions on Symmetric Cryptology, 2017(1):329-357, 2017.

