Mixing Layers in Symmetric Crypto Ko Stoffelen

Part I

Shorter Linear Straight-Line Programs for MDS Matrices

Part II

• <u>Maximum Distance Separable</u>

- <u>Maximum Distance Separable</u>
- Common linear layer with optimal branch number

- <u>Maximum Distance Separable</u>
- Common linear layer with optimal branch number
- A lot of effort on finding efficient MDS matrices over $\left(\mathbb{F}_2^k\right)^{n \times n}$

- <u>Maximum Distance Separable</u>
- Common linear layer with optimal branch number
- A lot of effort on finding efficient MDS matrices over $(\mathbb{F}_2^k)^{n \times n}$
- Compared by 'XOR count': multiplication of single element

- <u>Maximum Distance Separable</u>
- Common linear layer with optimal branch number
- A lot of effort on finding efficient MDS matrices over $(\mathbb{F}_2^k)^{n \times n}$
- Compared by 'XOR count': multiplication of single element
- But when viewed as binary matrix:

- <u>Maximum Distance Separable</u>
- Common linear layer with optimal branch number
- A lot of effort on finding efficient MDS matrices over $(\mathbb{F}_2^k)^{n \times n}$
- Compared by 'XOR count': multiplication of single element
- But when viewed as binary matrix:
 - Problem becomes shortest-linear straight-line program

- <u>Maximum Distance Separable</u>
- Common linear layer with optimal branch number
- A lot of effort on finding efficient MDS matrices over $(\mathbb{F}_2^k)^{n \times n}$
- Compared by 'XOR count': multiplication of single element
- But when viewed as binary matrix:
 - Problem becomes shortest-linear straight-line program
 - Global optimization saves more XORs

- <u>Maximum Distance Separable</u>
- Common linear layer with optimal branch number
- A lot of effort on finding efficient MDS matrices over $(\mathbb{F}_2^k)^{n \times n}$
- Compared by 'XOR count': multiplication of single element
- But when viewed as binary matrix:
 - Problem becomes shortest-linear straight-line program
 - Global optimization saves more XORs
 - Old algorithms improve many results (e.g., AES MixColumns)

- <u>Maximum Distance Separable</u>
- Common linear layer with optimal branch number
- A lot of effort on finding efficient MDS matrices over $(\mathbb{F}_2^k)^{n \times n}$
- Compared by 'XOR count': multiplication of single element
- But when viewed as binary matrix:
 - Problem becomes shortest-linear straight-line program
 - Global optimization saves more XORs
 - Old algorithms improve many results (e.g., AES MixColumns)
 - We find new MDS matrices with lowest number of XORs

• Keccak-f has very strong bounds on differential trails due to θ

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ -like mixing layers not well understood

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ -like mixing layers not well understood
- CPM: generalization of θ

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ -like mixing layers not well understood
- CPM: generalization of θ
 - Interesting algebraic properties

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ -like mixing layers not well understood
- CPM: generalization of θ
 - Interesting algebraic properties
 - Good *diffusion* properties

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ -like mixing layers not well understood
- CPM: generalization of θ
 - Interesting algebraic properties
 - Good *diffusion* properties
 - Also suitable for strongly aligned ciphers

- Keccak-f has very strong bounds on differential trails due to θ
- Properties of θ -like mixing layers not well understood
- CPM: generalization of θ
 - Interesting algebraic properties
 - Good *diffusion* properties
 - Also suitable for strongly aligned ciphers
 - Competitive with MDS matrices

$$\theta(A) = A + f(A)$$

(a _{0,0}	$a_{0,1}$	<i>a</i> _{0,2}	a _{0,3}
a _{1,0}	$a_{1,1}$	$a_{1,2}$	a _{1,3}
$(a_{2,0})$	$a_{2,1}$	a _{2,2}	a _{2,3} /

For an $m \times n$ matrix A over \mathbb{F}_2^k :

$$\theta(A) = A + \mathbf{1}_m^{\mathsf{T}} A$$

$$\begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} a_{0,0} & a_{0,1} & a_{0,2} & a_{0,3} \\ a_{1,0} & a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,0} & a_{2,1} & a_{2,2} & a_{2,3} \end{pmatrix}$$

 $1 \times n$ column parity

$$\theta(A) = A + \mathbf{1}_m^{\mathsf{T}} A Z$$

$$\theta(A) = A + \mathbf{1}_m \mathbf{1}_m^\mathsf{T} A Z$$

$$\theta(A) = A + \mathbf{1}_m^m A Z$$

For an $m \times n$ matrix A over \mathbb{F}_2^k :

$$\theta(A) = A + \mathbf{1}_m^m A Z$$

 $\boldsymbol{\theta}$ fully defined by $\boldsymbol{m},~\boldsymbol{n}$ and \boldsymbol{Z}

