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MDS Matrices in Symmetric Crypto

• Maximum Distance Separable

• Common linear layer with optimal branch number
• A lot of effort on finding efficient MDS matrices over

(
Fk
2
)n×n

• Compared by ‘XOR count’: multiplication of single element
• But when viewed as binary matrix:

– Problem becomes shortest-linear straight-line program
– Global optimization saves more XORs
– Old algorithms improve many results (e.g., AES MixColumns)
– We find new MDS matrices with lowest number of XORs
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Column Parity Mixers

• Keccak-f has very strong bounds on differential trails due to θ

• Properties of θ-like mixing layers not well understood
• CPM: generalization of θ

– Interesting algebraic properties
– Good diffusion properties
– Also suitable for strongly aligned ciphers
– Competitive with MDS matrices
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Column Parity Mixers

For an m × n matrix A over Fk
2 :

θ(A) = A+

1m

f (A)

Z

1
1
1

 (
1 1 1

)

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3



︸ ︷︷ ︸
1×n column parity


z0,0 z0,1 z0,2 z0,3
z1,0 z1,1 z1,2 z1,3
z2,0 z2,1 z2,2 z2,3
z3,0 z3,1 z3,2 z3,3


︸ ︷︷ ︸

n×n parity-folding matrix︸ ︷︷ ︸
1×n θ-effect︸ ︷︷ ︸

m×n expanded θ-effect

θ fully defined by m, n and Z
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