
Vectorizing Higher-Order Masking
Ko Stoffelen

Me

2/34

Joint work

Based on a COSADE 2018 paper with the same title

Together with:
Benjamin Grégoire (INRIA Sophia Antipolis)
Kostas Papagiannopoulos (Radboud University)
Peter Schwabe (Radboud University)

3/34

Mandatory SCA slide

4/34

Boolean masking

• SCA countermeasure
• Use uniformly random value r to split secret variable x into uniformly

random shares x1 and x2
• Set x1 := r and x2 := r ⊕ x ; now x1 ⊕ x2 = x
• Computations on x now on its shares

– Easy for linear operations
– Trickier for non-linear operations

• Computation becomes more expensive, but. . .
• Much (exponentially) harder for the attacker: needs to combine

leakage of both shares to recover x
• Generalized to masking with d shares: (d − 1)-order masking

5/34

Higher-order masking in practice

Higher-order masking
is slow

Compare plot [GR17]
to unmasked AES on
somewhat similar
CPU architecture:
~640 cycles

6/34

Core ideas

• Use parallelism to improve efficiency of higher-order masking

• Use NEON vector registers on ARM Cortex-A8 for optimized 4-share
and 8-share bitsliced AES

• Benchmark and evaluate its security against side-channel analysis

7/34

Bitslicing and AES

• Software implementation technique to easily operate on individual bits
• “Mimic hardware in software”
• Traditional bitslicing: store all bits in separate CPU registers
• E.g., for AES: 128 registers that each contain 1 bit
• If register has width w , process w independent blocks in parallel to

improve throughput
• Disadvantage: you do not have 128 registers
• Disadvantage: you may not have w parallelizable blocks
• Instead: exploit internal parallelism of SubBytes in AES (or other SPN

cipher)
• Store every i ’th bit of all state bytes in separate CPU registers
• For AES: 8 registers that each contain 16 bits
• Process

⌊ w
16
⌋
blocks in parallel

8/34

ARM CPUs

• Cortex-A (application): smartphone/tablet main CPU
• Cortex-R (real-time): sensors, PLCs, automotive
• Cortex-M (microcontroller): embedded controllers, IoT
• Our target: Cortex-A8
• 32-bit ARMv7-A architecture
• Comes with NEON unit for Advanced SIMD extension
• Adds vector registers and instructions

9/34

Masked bitsliced AES with NEON

• 16× 128-bit register or 32× 64-bit register
• Process shares in parallel instead of independent blocks

4 shares, 1 block
x1 x2 x3 x4

8 shares, 1 block
x1 x2 x3 x4 x5 x6 x7 x8

4 shares, 2 blocks
x1 y1 x2 y2 x3 y3 x4 y4

10/34

Parallel masking

• Problem: probing model unsuited for parallel implementations
• EUROCRYPT 2017: bounded moment model [BDF+17]
• Implementation is secure at order o if all mixed statistical moments of

order ≤ o are independent of secret
• Serial security in probing model implies parallel security in bounded

moment model
• Formal methods can be used to prove these properties
• So what kind of algorithms are secure in this model?

11/34

Secure parallel computations

These operations are sufficient

Addition/XOR
Simple: veor instruction

Multiplication/AND
Tricky: shares have to be combined to compute all partial
products, but without leaking; requires fresh randomness

Refreshing
Use fresh randomness to re-create uniform distribution

12/34

Secure parallel refreshing/multiplication

• Gadgets should be composable
• Composability requires strong non-interference (SNI) [BBD+16]
• Use program verification to prove SNI and security in probing model
• This implies security in bounded moment model
• We could improve some earlier results, but results are hard to

generalize

13/34

SNI-secure parallel refreshing

Notation: x = [x1, . . . , xd]; rot(x, n) = [x1+n, . . . , xd , x1, . . . , xn]

4 shares
r ⊕ rot(r, 1)⊕ x

8 shares
Was

r ⊕ rot(r, 1)⊕ r′ ⊕ rot(r′, 1)⊕ r′′ ⊕ rot(r′′, 1)⊕ x

Now
r ⊕ rot(r, 1)⊕ r′ ⊕ rot(r′, 2)⊕ x

14/34

SNI-secure parallel refreshing

4 shares

vld1.64 {\tmp}, [\rand]!
veor \a, \tmp
vext.16 \tmp, \tmp, #1
veor \a, \tmp

8 shares

vld1.64 {\tmp}, [\rand:128]!
veor \a, \tmp
vext.16 \tmp, \tmp, #1
veor \a, \tmp

vld1.64 {\tmp}, [\rand:128]!
veor \a, \tmp
vext.16 \tmp, \tmp, #2
veor \a, \tmp

15/34

SNI-secure parallel multiplication

4 shares
Was

x · y⊕ r ⊕ x · rot(y, 1)⊕ rot(x, 1) · y
⊕ rot(r, 1)⊕ x · rot(y, 2)⊕ r′ ⊕ rot(r′, 1)

Now
x · y⊕ r ⊕ x · rot(y, 1)⊕ rot(x, 1) · y
⊕ rot(r, 1)⊕ x · rot(y, 2)⊕ [r ′, r ′, r ′, r ′]

8 shares
x · y⊕ r ⊕ x · rot(y, 1)⊕ rot(x, 1) · y⊕ rot(r, 1)
⊕ x · rot(y, 2)⊕ rot(x, 2) · y⊕ r′

⊕ x · rot(y, 3)⊕ rot(x, 3) · y⊕ rot(r′, 1)
⊕ x · rot(y, 4)⊕ r′′ ⊕ rot(r′′, 1)

16/34

SNI-secure parallel multiplication

4 shares

vand \c, \a, \b //K = A.B
vld1.64 {\tmpr}, [\rand]! //get 8 bytes of randomness
vext.16 \tmp, \b, \b, #1
veor \c, \tmpr // + R
vand \tmp, \a
veor \c, \tmp // + A.(rot B 1)
vext.16 \tmp, \a, \a, #1
vand \tmp, \b
veor \c, \tmp // + (rot A 1).B
vext.16 \tmpr, \tmpr, #1
veor \c, \tmpr // + (rot R 1)
vext.16 \tmp, \b, \b, #2
vand \tmp, \a
veor \c, \tmp // + A.(rot B 2)
vld1.16 {\tmp[]}, [\rand]! //get 2 bytes of randomness
veor \c, \tmp // + (r’,r’,r’,r’)

17/34

AES – SubBytes

• Circuit with least operations requires 81 XORs and 32 ANDs
• Use compiler from [BBD+16] to generate masked implementation

with new gadgets
• Compiler detects when refreshing is necessary
• In this case: one input of every AND is refreshed
• Tool-assisted optimization: reschedule to decrease number of

loads/stores
• Manual optimization: hide some CPU latencies, handle alignment

issues

18/34

AES – ShiftRows

• Normal representation: rotation of rows
• Bitsliced representation: for all registers, for all shares, rotation within

every 4 bits of the 16 bits

state[i] = ((state[i] & 0xf000) |
((state[i] & 0x0800) >> 3) |
((state[i] & 0x0700) << 1) |
((state[i] & 0x0030) << 2) |
((state[i] & 0x00c0) >> 2) |
((state[i] & 0x000e) >> 1) |
((state[i] & 0x0001) << 3)

);

Assembly: vand, vmov.I16, vorr, vshl.I16, vsra.U16

19/34

AES – MixColumns

• Normal representation: ‘matrix multiplication’ on columns
• Bitsliced representation: many XORs and rotations by multiples of 4

over 16 bits
• Assembly: veor, vmov, vrev16.8, vshl.I16, vsra.U16

20/34

AES – Randomness (bytes)

4 shares 8 shares

Refreshing 8 32 (was 48)

Multiplication 10 (was 16) 48

Full AES 5,760 25,600

Speed of RNG has large impact on performance!

21/34

AES – Performance on Cortex-A8

4 shares
1 block

4 shares
2 blocks

8 shares
1 block

Clock cycles
(rand. from /dev/urandom)

1,598,133 4,738,024 9,470,743

Clock cycles
(rand. from normal file)

14,488 17,586 26,601

Clock cycles
(pre-loaded rand.)

12,385/
774 cpb

15,194/
475 cpb

23,616/
1476 cpb

Stack usage in bytes 12 300 300
Code size in bytes 39,748 44,004 70,188

22/34

AES – Performance on Cortex-A8

[GR17] assumes pre-loaded
randomness

From 100k/350k to 12k/24k

But Cortex-A8 more powerful

23/34

SCA evaluation setup

24/34

SCA evaluation setup

• BeagleBone Black @ 1 GHz, running Debian
• LeCroy WaveRunner @ 2.5 GS/s for 1M traces
• Langer EM probe RF-B 0.3-3 @ capacitor 66
• Langer amplifier PA 303 SMA
• Trigger using GPIO port
• Data over Ethernet/TCP
• Elastic alignment post-processing

25/34

Share independence

• Ideally, d-share schemes are secure against (d − 1)-order attacks
• Share recombination, coupling effects, distance-based leakage cause

divergence
• We do not explicitly take care of these transitional leakages
• Practical security order < d − 1
• Order reduction theorem: practical security order

⌊ d−1
2
⌋
[BGG+14]

• So when d = 4, 1st-order security?

26/34

TVLA

• First approach: Welch T-test
• Univariate 1M fixed vs. 1M random
• To keep computation time somewhat reasonable: focus on one AES

round
• Use one-pass formulas of Schneider and Moradi [SM15]
• Many samples per trace: control familywise error rate with Ŝidak

correction
• For 25k samples, threshold 6.25

27/34

TVLA

T-test suggests resistance against 2nd-order attacks

28/34

TVLA

Security issues at 3rd order

29/34

Leakage certification

• Two types of errors [DSDP16]
– Estimation errors: not enough traces
– Modelling errors: incorrect leakage assumption

• Leakage certification can distinguish between them

30/34

Information-theoretic bounds

• The previous approaches scale poorly to our 8-share implementation
• How to evaluate this? [DFS15]

1. Estimate the SNR of the device (≈ 0.004)
2. Compute the hypothetical information between the leakage and

the secret key

HI(S; L) = H[S] +
∑
s∈S

Pr[s] ·
∫

`∈L

P̂r[`|s] · log2 P̂rmodel[s|`]d`

This shows the ‘amount’ of leakage if estimated P̂rmodel is
accurate

3. Extrapolate to 8 shares using information-theoretical bounds
• We use Prouff–Rivain bound: 1.72d + 2.72 [PR13]

31/34

Information-theoretic bounds

32/34

Conclusions

• ARM NEON is a powerful tool for implementors

• Parallellized implementations become increasingly relevant in the
context of SCA countermeasures

• Ensuring share independence seems to be hard and interfaces with the
architectural and electrical layers

• Understanding the randomness requirements for masking / an efficient
masking RNG is still an important open problem

33/34

Thanks. . .

. . . for your attention!

Questions?

34/34

References I

Gilles Barthe, Sonia Belaïd, François Dupressoir, Pierre-Alain Fouque, Benjamin Grégoire,
Pierre-Yves Strub, and Rébecca Zucchini.
Strong non-interference and type-directed higher-order masking.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security, CCS ’16, pages 116–129. ACM, 2016.
http://eprint.iacr.org/2015/506.pdf.

Gilles Barthe, François Dupressoir, Sebastian Faust, Benjamin Grégoire, François-Xavier
Standaert, and Pierre-Yves Strub.
Parallel implementations of masking schemes and the bounded moment leakage model.
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology —
EUROCRYPT 2017, volume 10210 of LNCS, pages 535–566. Springer, 2017.
http://eprint.iacr.org/2016/912.pdf.

Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-Xavier
Standaert.
On the cost of lazy engineering for masked software implementations.
In Marc Joye and Amir Moradi, editors, Smart Card Research and Advanced Applications —
CARDIS 2014, volume 8968 of LNCS, pages 64–81. Springer, 2014.
http://eprint.iacr.org/2014/413.pdf.

35/34

http://eprint.iacr.org/2015/506.pdf
http://eprint.iacr.org/2016/912.pdf
http://eprint.iacr.org/2014/413.pdf

References II

Alexandre Duc, Sebastian Faust, and François-Xavier Standaert.
Making masking security proofs concrete — Or how to evaluate the security of any leaking
device.
In Advances in Cryptology — EUROCRYPT 2015, volume 9056 of LNCS, pages 401–429.
Springer, 2015.
https://eprint.iacr.org/2015/119.pdf.

François Durvaux, François-Xavier Standaert, and Santos Merino Del Pozo.
Towards easy leakage certification.
In Benedikt Gierlichs and Axel Y. Poschmann, editors, Cryptographic Hardware and
Embedded Systems — CHES 2016, volume 9813 of LNCS, pages 40–60. Springer, 2016.
https://eprint.iacr.org/2015/537.pdf.

Dahmun Goudarzi and Matthieu Rivain.
How fast can higher-order masking be in software?
In Jean-Sébastien Coron and Jesper Buus Nielsen, editors, Advances in Cryptology —
EUROCRYPT 2017, volume 10210 of LNCS, pages 567–597. Springer, 2017.
https://eprint.iacr.org/2016/264.pdf.

36/34

https://eprint.iacr.org/2015/119.pdf
https://eprint.iacr.org/2015/537.pdf
https://eprint.iacr.org/2016/264.pdf

References III

Emmanuel Prouff and Matthieu Rivain.
Masking against side-channel attacks: A formal security proof.
In Thomas Johansson and Phong Q. Nguyen, editors, Advances in Cryptology —
EUROCRYPT 2013, volume 7881 of LNCS, pages 142–159. Springer, 2013.
http://www.iacr.org/archive/eurocrypt2013/78810139/78810139.pdf.

Tobias Schneider and Amir Moradi.
Leakage assessment methodology — A clear roadmap for side-channel evaluations.
In Cryptographic Hardware and Embedded Systems — CHES 2015, volume 9293 of LNCS,
pages 495–513. Springer, 2015.
http://eprint.iacr.org/2015/207.pdf.

37/34

http://www.iacr.org/archive/eurocrypt2013/78810139/78810139.pdf
http://eprint.iacr.org/2015/207.pdf

